CSI is a strong automatic tool for (dis)proving confluence of first-order term rewrite systems (TRSs). It is based on the termination prover TTT2 \cite{4} and has been in development since 2010. Its name is derived from the Confluence of the rivers Sill and Inn in Innsbruck. The tool is available from

\text{http://cl-informatik.uibk.ac.at/software/csi}

under a LGPLv3 license. A new improved web interface is available as well. Below we briefly report on recent extensions that make CSI more powerful, secure, and useful. A more detailed description can be found in \cite{5}.

TRSs that contain AC rules pose a challenge for confluence provers. In CSI we incorporated a version of the AC critical pair lemma based on extended rules \cite{7}, which is used in the modern completion tool mkbtt \cite{8}. For unique normal form properties, we now support Chew’s theorem \cite{1} for UNC and, for ground TRSs, a decision procedure for NFP (in addition to CR, UNC and UNR \cite{2,3}). The most recent addition to CSI’s repertoire of certifiable confluence criteria is based on terminating critical-pair-closing systems \cite{6}. The following table demonstrates the progress CSI has made in the last 6 years; CSI 0.1 was released in 2011, CSI 0.6 participated in CoCo 2016. The results in the final column are using CSI’s certified mode.

<table>
<thead>
<tr>
<th></th>
<th>CSI 0.1</th>
<th>CSI 0.6</th>
<th>CSI 1.1</th>
<th>✓CSI 1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>116</td>
<td>181</td>
<td>215</td>
<td>119</td>
</tr>
<tr>
<td>no</td>
<td>51</td>
<td>62</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>maybe</td>
<td>142</td>
<td>66</td>
<td>27</td>
<td>123</td>
</tr>
</tbody>
</table>

References

\(\ast\)Supported by FWF (Austrian Science Fund) project P27528.