CoCo 2016 Participant: CSIho 0.2*

Julian Nagele
Department of Computer Science, University of Innsbruck, Austria
jalian.nagele@uibk.ac.at

Higher-order rewriting combines standard, first-order rewriting with notions and concepts from the λ-calculus, resulting in rewriting systems with higher-order functions and bound variables. CSIho is a tool for automatically proving confluence of such higher-order systems, specifically pattern rewrite systems (PRSs) as introduced by Nipkow [3, 5]. The restriction to pattern left-hand sides is essential for obtaining decidability of unification and thus makes it possible to compute critical pairs. To this end CSIho implements a version of Nipkow’s algorithm for higher-order pattern unification [6].

CSIho is built on top of CSI [9], a powerful confluence prover for first-order term rewrite systems. It is available from http://cl-informatik.uibk.ac.at/software/csi/ho/. Using CSI as foundation, CSIho inherits many of its attractions, in particular a strategy language, which allows for flexible configuration of the proof search. CSIho supports the following techniques:

2015 Knuth and Bendix’ criterion, that is, for terminating PRSs we decide confluence by checking joinability of critical pairs [5]. For showing termination CSIho uses a basic higher-order recursive path ordering and static dependency pairs with dependency graph decomposition and the subterm criterion. For potentially non-terminating PRSs it supports weak orthogonality [8] and van Oostrom’s result on development closed critical pairs [7].

2016 As a first divide-and-conquer criterion CSIho includes modularity of confluence for left-linear PRSs—note that confluence of PRSs is not modular in general [1]. To improve CSIho on terminating systems, external termination tools like WANDA [2] can now be used as a termination back-end. The final novelty this year is the simple technique of adding and removing redundant rules [4], adapted for PRSs.

References

*Supported by Austrian Science Fund (FWF), project P27528.