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Abstract. CSI is a strong automated confluence prover for rewrite sys-
tems which has been in development since 2010. In this paper we report
on recent extensions that make CSI more powerful, secure, and useful.
These extensions include improved confluence criteria but also support
for uniqueness of normal forms. Most of the implemented techniques pro-
duce machine-readable proof output that can be independently verified
by an external tool, thus increasing the trust in CSI. We also report on
CSÎ ho, a tool built on the same framework and similar ideas as CSI that
automatically checks confluence of higher-order rewrite systems.

1 Introduction

CSI [44] is an automatic confluence prover for rewrite systems, which participates
in the annual confluence competition (CoCo) [1].

In this paper we report on recent additions to CSI, in particular support for
higher-order rewrite systems, efficient decision procedures for the unique normal
form properties for ground rewrite systems, support for first-order systems with
associative and commutative symbols, and more refined non-confluence tech-
niques. Several techniques have been formalized to enable certification of the
output of CSI, making it the most trustworthy confluence tool.

We assume familiarity with rewriting [7]. Here we only recall notions that will
be used in Section 2. We consider terms built from a signature F and a disjoint
set of variables V. Given a subset FAC ⊆ F of binary function symbols, the term
rewrite system (TRS for short) AC consists of the AC rules f(x, y)→ f(y, x) and
f(f(x, y), z)→ f(x, f(y, z)) for every f ∈ FAC. We write ∼AC for the congruence
induced by AC. Given a TRS R over the signature F , we write Re for the union
of R and the extended rules f(`, x) → f(r, x) for all ` → r ∈ R such that
root(`) = f ∈ FAC. We write →R/AC for the relation ∼AC · →R · ∼AC. The
relation →R,AC is defined as follows: s →R,AC t if there exists a position p in
s, a rewrite rule ` → r in R, and a substitution σ such that s|p ∼AC `σ and
t = s[rσ]p. The relations →R/AC and →Re,AC · ∼AC coincide.

Consider two rewrite rules `1 → r1 and `2 → r2 without common variables
and a function position p in `2 such that `l and `2|p are unifiable modulo AC.
Given a complete set S of AC unifiers of `l and `2|p, the pair `2[r1]pσ ≈ r2σ
with σ ∈ S is called an AC critical pair. The set of all AC critical pairs between
rules of a TRS R and a TRS S is denoted by CPAC(R,S).
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The remainder of the paper is organized as follows. In the next section we
report on the main extensions to CSI for (non-)confluence proving of TRSs.
Section 3 is devoted to the support of CSI for the unique normal form properties.
The extension to higher-order systems is covered in Section 4. An overview of
the certified techniques in CSI is presented in Section 5. Some implementation
details are given in Section 6 before we conclude in Section 7 with experimental
data.

2 Extensions

In this section we describe the two features for (non-)confluence proving of TRSs
that were added to CSI after CoCo 2016. Other extensions are briefly described
in the one-page tool descriptions accompanying CoCo.1

TRSs that contain AC rules pose a challenge for confluence provers. The
confluence problems database (Cops)2 contains several such systems whose sta-
tus is open. Aoto and Toyama [2] developed a special confluence technique for
rewrite systems with AC rules and more general non-terminating rewrite sys-
tems, which is incorporated in the confluence prover ACP [5]. A key idea in [2] is
that AC rules are reversible. This idea was combined with the extended critical
pair lemma of Jouannaud and Kirchner [13] in Saigawa [15] and more recently
in CoLL [38], where the technique is extended to handle associative rules in the
absence of commutation rules.

Theorem 1 (Jouannaud and Kirchner [13], Shintani and Hirokawa [38]).
If R = S ] AC such that s →∗S,AC · ∼AC · ∗

S,AC← t for all s ≈ t ∈ CPAC(S,S ∪
AC ∪ AC−1) and S/AC is terminating then R is confluent.

In CSI we incorporated the version of the AC critical pair lemma based on
extended rules [32], which is used in the modern completion tool mkbtt.3

Theorem 2. If R = S ] AC such that s→∗S/AC · ∼AC · ∗
S/AC← t for all s ≈ t ∈

CPAC(Se,Se) and S/AC is terminating then R is confluent.

We illustrate the use of Theorem 2 on two examples.

Example 3. The rewrite system (Cops 183)

+(0, x)→ x +(x, 0)→ x −(+(x, y))→ +(−(x),−(y))

+(1,−(1))→ 0 +(−(1), 1)→ 0 +(x, y)→ +(y, x)

−(0)→ 0 −(−(x))→ x +(+(x, y), z)→ +(x,+(y, z))

cannot be handled by the recent ground confluence prover AGCP [3, Example 25].
After removing the AC rules +(+(x, y), z) → +(x,+(y, z)) and +(x, y) →
1 Available from http://coco.nue.riec.tohoku.ac.jp/2013-2016 under Entrants.
2 http://cops.uibk.ac.at
3 http://cl-informatik.uibk.ac.at/software/mkbtt

http://cops.uibk.ac.at/
http://coco.nue.riec.tohoku.ac.jp/2013
http://coco.nue.riec.tohoku.ac.jp/2016
http://cops.uibk.ac.at
http://cl-informatik.uibk.ac.at/software/mkbtt
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+(y, x) we obtain a rewrite system S such that the 18 AC critical pairs of Se
are joinable modulo AC.4 (arising from 27 AC critical peaks) Since S is easily
shown to be AC terminating (e.g. ACRPO [36] applies), we conclude by The-
orem 2 that the original rewrite system is confluent. In particular, it is ground
confluent, answering the open problem in [3].

Interestingly, the CoCo 2015 version of CoLL-Saigawa, using Theorem 1, could
already show confluence of the TRS of Example 3. In light of the next example,
it remains to be seen whether this answer can be trusted.

Example 4. Consider the rewrite system

a + b→ b c + a→ a x+ y → y + x (x+ y) + z → x+ (y + z)

consisting of S = {a + b → b, c + a → a} and the AC rules for +. The two
extended rules

(a + b) + z → b + z (c + a) + z → a + z

admit the AC critical peak

c + b← (c + a) + b→ a + b

where c+b is in normal form and a+b rewrites in one step to the normal form b.
These normal forms are obviously not AC equivalent. Hence Theorem 2 does not
apply and CSI correctly reports that the system is not confluent. Surprisingly,
CoLL-Saigawa wrongly reports the opposite. The reason could be that the peak

b + z S← (a + b) + z →AC a + (b + z)

is joinable modulo AC (as a + (b + z)→S/AC b + z) but a + (b + z) is a normal
form with respect to →S,AC and hence Theorem 1 does not apply.

The second extension we describe is a non-confluence technique, or more
precisely, a technique for finding non-joinable conversions. Let us first consider
an example.

Example 5. Consider the TRS R due to Klop [16] consisting of the three rules

f(x, x)→ a g(x)→ f(x, g(x)) c→ g(c)

Because of the rewrite sequence c → g(c) → f(c, g(c)) → f(g(c), g(c)) → a we
also have c → g(c) →∗ g(a) and since a and g(a) are not joinable,5 R is not
confluent.

4 In fact, CSI uses a modified definition of Se that avoids adding extended rules for rules
where the same linear variable appears as an argument of the two top-flattenings
of the left-hand and right-hand sides of the rule, using the same AC symbol. In the
example, this applies to the first two rules. We still have →S/AC =→Se,AC· ∼AC.

5 This can be shown using tree automata techniques [11].
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However, finding the above conversion is non-trivial and indeed none of the
participants of CoCo 2016 can show non-confluence of this system. The tech-
nique of redundant rules [22] can be used to strengthen other criteria in such
situations. The basic idea is to add or remove rules that can be simulated by the
other rules, thus reflecting (non-)confluence. A systematic method for finding
redundant rules is presented below.

Definition 6. Given two variable disjoint rewrite rules `1 → r1 and `2 → r2
of a TRS R, a function position p in r1, and an mgu σ of r1|p and `2, the
rewrite rule `1σ → r1σ[r2σ]p is a forward closure of R. We write FC(R) for the
extension of R with all its forward closures.

Since the rules in FC(R) \ R are redundant (as they can be simulated using
the rules of the original TRS R), the following result is obvious.

Lemma 7. A TRS R is confluent if and only if the TRS FC(R) ∪ FC(R−1)−1

is confluent ut

The reason for including FC(R−1)−1 will become clear in the next section.
Returning to Example 5 we find

c→ f(c, g(c)) ∈ FC(R) c→ a ∈ FC3(R)

c→ f(g(c), g(c)) ∈ FC2(R) c→ g(a) ∈ FC4(R)

and hence we obtain the non-joinable critical pair a ≈ g(a) ∈ CP(FC4(R)). By
Lemma 7 this implies non-confluence of R.

3 Unique Normal Forms

In addition to confluence, CSI includes preliminary support for two unique nor-
mal form properties, namely UNC (any two convertible normal forms are equal;
two terms s and t are convertible if s↔∗ t) and UNR (any term reaches at most
one normal form). Note that in contrast to CSÎ ho (described in the next sec-
tion), which has to deal with a whole new rewriting mechanism, adding support
for UNR and UNC is similar to adding a new confluence criterion, which is why
there is no separate CSÎ un tool. Furthermore, the implications

CR =⇒ UNC =⇒ UNR (1)

mean that any confluence criterion can also serve as a criterion for UNC and
UNR, which is another reason for using a confluence tool as the basis of a tool for
unique normal forms. (The reverse implications do not hold, as witnessed by the
well-known TRSs R1 = {b → a, b → c, c → c} and R2 = R1 ∪ {d → c, d → e}.
The first one is UNC but not CR because a and c do not have a common reduct;
the second one is UNR but not UNC because the normal forms a and e are
convertible.)
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CSI incorporates efficient decision procedures for both UNC and UNR for
ground term rewrite systems, which are TRSs without variables. The former
property can be decided in O(n log n) time, where n is the size of the input TRS,
based on currying, the congruence closure algorithm by Nelson and Oppen [26],
and an ad hoc enumeration of runs of a tree automaton that accepts convertible
normal forms. The latter property is decided in O(n3) time, using currying and
ground tree transducers that accept normal forms which are related by a peak.
For details of these two algorithms, see [9]. Furthermore, CSI implements the
following criterion for UNC for non-ground systems.

Theorem 8 (Kahrs and Smith [14]). Every non-ω-overlapping TRS has
unique normal forms with respect to conversions (UNC).

A TRS is ω-overlapping if it has overlaps that may be infinite terms. In
order to check for ω-overlaps, CSI implements a unification algorithm without
occurs-check.

Example 9. The TRS consisting of the rules

f(x, x)→ a f(x, g(x))→ b c→ g(c)

of [12] is not UNR because a ← f(c, c) → f(c, g(c)) → b is a peak connect-
ing two distinct normal forms. This TRS is non-overlapping but ω-overlapping
because f(gω, gω) is an instance of both f(x, x) and f(y, g(y)) by substituting
{x 7→ gω, y 7→ gω}. The TRS from Example 5 on the other hand is non-ω-
overlapping and hence UNC by Theorem 8.

Finally, there is a simple check for non-UNR, where CSI attempts to find two
distinct normal forms reachable from the same term by starting from critical
peaks and overlaps at variables. Including variable overlaps enables CSI to find
the peak in Example 9. Note that Lemma 7 also holds for UNR. This enables
an alternative approach to finding a suitable peak for Example 9: There is an
overlap between f(c, c) → b ∈ FC(R−1)−1 and f(x, x) → a ∈ R, resulting in
the critical pair a ≈ b. Note that considering FC(R) alone does not yield any
progress in this example.

We aim for having a single tool that simultaneously attempts to prove and
disprove all three properties UNR, UNC and CR, fully exploiting the chain of
implications (1) for optimization. For example, if UNC has been established, any
effort spent on proving UNR would be wasted, but the current implementation
cannot use this information. For the time being, however, there are separate tool
invocations for each of these properties.

4 Higher-Order Confluence

CSÎ ho is an extension of CSI for proving confluence of higher-order rewrite sys-
tems. Higher-order rewriting combines first-order rewriting with notions and
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concepts from (typed) λ-calculus, resulting in rewriting systems with higher-
order functions and bound variables. More precisely we consider pattern rewrite
systems (PRSs) as introduced by Nipkow [20,27], i.e., terms are simply typed
lambda terms with constants modulo λβη and rewriting uses higher-order match-
ing. Additionally left-hand sides of rewrite rules are required to be patterns [21].6

This restriction is essential for obtaining decidability of unification and thus
makes it possible to compute critical pairs. To this end CSÎ ho implements a
version of Nipkow’s algorithm for higher-order pattern unification [28].

Example 10. The untyped lambda calculus with β and η-reduction can be en-
coded as a PRS as follows:

abs : (term→ term)→ term app : term→ term→ term

app(abs(λx. M(x)), N)→M(N) abs(λx. app(M,x))→M

Next we briefly explain the confluence criteria supported by CSÎ ho. The first
criterion is based on a higher-order version of the critical pair lemma.

Lemma 11 (Nipkow [27]). A PRS R is locally confluent if and only if s ↓ t
for all critical pairs s ≈ t of R.

The definition of critical pairs is essentially the same as in the first-order
setting, with some additional technicalities to account for the presence of bound
variables, see e.g. [20] for a formal definition. Together with Newman’s Lemma
this yields a confluence criterion for PRSs.

Corollary 12. A terminating PRS R is confluent if and only if s ↓ t for all
critical pairs s ≈ t of R.

For showing termination CSÎ ho uses a basic higher-order recursive path or-
dering [33] and static dependency pairs with dependency graph decomposition
and the subterm criterion [19]. Alternatively, one can also use an external ter-
mination tool like WANDA [18] as an oracle.

For potentially non-terminating systems CSÎ ho supports two more classical
criteria based on critical pairs. The first states that weakly orthogonal systems
are confluent.

Theorem 13 (van Oostrom and van Raamsdonk [30]). A left-linear PRS
R is confluent if s = t for all critical pairs s ≈ t of R.

The PRS from Example 10 has two trivial critical pairs and hence is confluent.
This result was extended by van Oostrom to allow for non-trivial critical pairs
that are connected by a development step.7

Theorem 14 (van Oostrom [29]). A left-linear PRS R is confluent if s −→○ t
for all critical pairs s ≈ t of R.

6 A term is a pattern if free variables only have distinct bound variables as arguments.
7 A development step −→○ contracts multiple, non-overlapping but possibly nested re-

dexes at once.
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As a divide-and-conquer technique CSÎ ho implements modularity, i.e., de-
composing a PRS into parts with disjoint signatures, for left-linear PRSs [6]. Note
that the restriction to left-linear systems is essential—unlike for the first-order
setting confluence is not modular in general. The following example illustrates
the problem.

Example 15. Consider the PRS R from [6] consisting of the three rules

f(x, x)→ a f(x, g(x))→ b µ(λx. Z(x))→ Z(µ(λx. Z(x)))

The first two rules and the third rule on their own are confluent, e.g. by Corol-
lary 12 and Theorem 13 respectively. However, because of the peak

a← f(µ(λx. g(x)), µ(λx. g(x)))→ f(µ(λx. g(x)), g(µ(λx. g(x))))→ b

R is not confluent. Note thatR does not have critical pairs, making it non-trivial
to find this peak.

As described in Section 2 redundant rules can used to find such peaks. Imple-
menting transformations based on redundant rules for PRSs is straightforward,
one just has to take care to only add rules that do not violate the pattern re-
striction.

Example 16. Consider the PRS from Example 15. After adding the redundant
rule f(µ(λx. g(x)), µ(λx. g(x))) → b there is a critical pair a ≈ b and non-
confluence is obvious.

To find new rules like the one above we again use narrowing, applying rules in
both directions. In Example 16 unifying Z(µ(λx. Z(x))) with g(x) and applying
the reversed third rule to the left-hand side of the second rule yields the desired
new rule. The following example illustrates removal of redundant rules.

Example 17. Consider the following encoding of lambda-calculus with Regnier’s
σ-reduction [34]:

app(abs(λx. T (x)), S)→ T (S)

app(abs(λy. abs(λx. M(y, x))), S)→ abs(λx. app(abs(λy. M(y, x)), S))

app(app(abs(λx. T (x)), S), U)→ app(abs(λx. app(T (x), U)), S)

Since the left- and right-hand side of the second and third rule are convertible
using the first rule, they can be removed and confluence of the first rule alone
can be established by Theorem 13.

5 Certification

Due to the increasing interest in automatic analysis of rewrite systems in recent
years, it is of great importance whether a proof, generated by an automatic tool,
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is indeed correct (cf. Example 4). Since the proofs produced by such tools are
often complex and large, checking correctness is impractical for humans. Hence
there is strong interest in verifying them using an independent certifier. A cer-
tifier is a tool that reads proof certificates, and either accepts them as correct
or rejects them as erroneous. To ensure correctness of the certifier, the predom-
inant solution is to use proof assistants like Coq or Isabelle to first formalize the
underlying theory in the proof assistant and then use the formalization to obtain
verified functions for inspecting the certificates.

As certifier we use CeTA [41], which reads certificates in CPF (certification
problem format) [40]. Given a certificate CeTA will either answer CERTIFIED, or
return a detailed error message why the proof was REJECTED. Its correctness
is formally proved as part of IsaFoR, the Isabelle Formalization of Rewriting.
IsaFoR contains executable check-functions for each formalized proof technique
together with formal proofs that whenever such a check succeeds, the technique
was indeed applied correctly. Isabelle’s code-generation facility is used to obtain
a trusted Haskell program from these check functions: the certifier CeTA.8 Since
2012 CeTA supports checking (non-)confluence certificates. CSI supports certi-
fiable output for the following criteria checkable by CeTA: Knuth and Bendix’
criterion [17,39], (weak) orthogonality [35,25], Huet’s results on strongly closed
and parallel closed critical pairs and Toyama’s extenson of the latter [12,42,24],
the rule labeling heuristic for decreasing diagrams [23,45], and transformations
based on redundant rules [22]. For non-confluence CeTA can check that, given
derivations s→∗ t1 and s→∗ t2, t1 and t2 cannot be joined. Here the justifica-
tions used by CSI are: using tcap [44] (i.e., test that tcap(t1σ) and tcap(t2σ) are
not unifiable), and reachability analysis using tree automata [11]. Experimental
results for certified confluence analysis are presented in Section 7.

6 Implementation Details

CSI is open source and available as pre-compiled binary or via the web-interface
shown in Figure 1 from http://cl-informatik.uibk.ac.at/software/csi,
CSÎ ho can be obtained from http://cl-informatik.uibk.ac.at/software/

csi/ho. Since its first release one of CSI’s defining features has been its strategy
language, which enables the combination techniques in a flexible manner and
facilitates integration of new criteria. Some of the combinators provided to com-
bine methods that we will use below are: sequential composition of strategies ;,
alternative composition | (which executes its second argument if the first fails),
parallel execution ||, and iteration *. A postfix n* executes a strategy at most n
times while [n] executes its argument for at most n seconds. Finally ? applies a
strategy optionally (i.e., only if it makes progress), and ! ensures that its argu-
ment only succeeds if confluence could be (dis)proved. For a full grammar of the
strategy language pass the option -h to CSI. To illustrate its power we briefly

8 IsaFoR/CeTA and CPF are available at http://cl-informatik.uibk.ac.at/

software/ceta.

http://cl-informatik.uibk.ac.at/software/csi
http://cl-informatik.uibk.ac.at/software/csi/ho
http://cl-informatik.uibk.ac.at/software/csi/ho
http://cl-informatik.uibk.ac.at/software/ceta
http://cl-informatik.uibk.ac.at/software/ceta
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Fig. 1. The new web-interface of CSI.

compare the strategy used in CSI 0.1 with the one from CSI 1.0. The original
strategy was

(KB || NOTCR || (((CLOSED || DD) | add)2*)! || sorted -order)*

where sorted -order applies order-sorted decomposition and methods writ-
ten in capitals are abbreviations for sub-strategies: KB applies Knuth-Bendix’
criterion, CLOSED tests whether the critical pairs of a TRS are strongly or devel-
opment closed, DD implements decreasing diagrams, and NOTCR tries to establish
non-confluence. The current strategy is

(if trs then (sorted -order*;

(((GROUND || KB || AC || KH || AT || SIMPLE || CPCS2 ||

(REDUNDANT DEL?; (CLOSED || DD || SIMPLE || KB || AC ||

GROUND))3*! || ((CLOSED || DD) | REDUNDANT RHS)3*! ||

((CLOSED || DD) | REDUNDANT JS)3*! || fail)[30] | CPCS[5]2*)2* ||

(NOTCR | REDUNDANT FC)3*!)

) else fail)

which illustrates how to integrate new techniques independently or in combi-
nation with others, for instance the REDUNDANT X strategies, which are different
heuristics for finding redundant rules. The features described in Section 2 are re-
flected in AC and REDUNDANT FC. The AC substrategy is simply tried in parallel to
the existing methods for confluence and non-confluence. For the REDUNDANT FC
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CSI 0.1 CSI 0.6 CSI 1.0 XCSI 1.0

yes 115 179 206 116
no 46 55 61 61
maybe 130 57 24 114

CSÎ ho

yes 50
no 10
maybe 9

Table 1. Confluence results.

> UNR UNC CR

> 120 43 37 17
¬CR 81 20 14 –
¬UNC 33 6 – –
¬UNR 27 – – –

Table 2. Unique normal form results.

method, which modifies a problem, a different approach is used: first, a non-
confluence proof (NOTCR) is attempted. If that fails, then rules from the forward
closure are added, and the process is repeated, starting with another attempt at
proving non-confluence. After 3 iterations, CSI gives up on the non-confluence
check. Other additions are a decision procedure for ground systems [8] (GROUND),
criteria by Klein and Hirokawa [15] (KH) and by Aoto and Toyama [2] (AT), sim-
ple to test syntactic criteria by Sakai, Oyamaguchi, and Ogawa [37], and Toyama
and Oyamaguchi [43] (SIMPLE), and techniques based on critical pair closing sys-
tems [31] (CPCS). The full strategy configuration file (which consists of definitions
of abbreviations like AC) grew from 76 to 233 lines since the initial release.

7 Experimental Results

For experiments9 we considered all 291 TRSs in the Cops database. Table 1
compares the power of the current version of CSI (1.0) to its initial release
(CSI 0.1 [44]) and to the version used in CoCo 2016 (0.6). For each problem,
a tool may establish confluence (yes), non-confluence (no), or fail to give a
conclusive answer (maybe), corresponding to the rows of the table. The progress
achieved in the past few months is obvious. Of the 24 systems which CSI cannot
handle, its main weakness is lack of special support for non-left-linear rules.
Here for instance criteria based on quasi-linearity [4] and implemented in ACP
are missing in CSI’s repertoire. Some of the 24 systems are (currently) out of
reach for all automatic confluence tools, like extensions of combinatory logic or
self-distributivity.

The fourth column shows the results when using CSI’s certifiable strategy,
i.e., only criteria that can be checked by CeTA. Note that the maybe answers, in

9 Full details are available from CSI’s website.

http://cl-informatik.uibk.ac.at/software/csi/
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principle, include proofs produced by CSI that are not accepted by CeTA. However,
because we also use Cops for testing the tools, this case does not occur for this
set of problems. While all non-confluence proofs produced by CSI are certifiable
there is still a gap in confluence analysis. The main missing techniques are a
criterion to deal with AC rules, e.g. the ones from Section 2 or the one by Aoto
and Toyama [2], advanced decomposition techniques based on layer systems [10],
and techniques for dealing with non-left-linear systems, in particular the criteria
by Klein and Hirokawa [15] and by Sakai, Oyamaguchi, and Ogawa [37]. The
formalization and subsequent certification of most of these techniques requires
serious effort, which we leave as future work.

Table 2 summarizes the results for UNR and UNC. We include CR in the
table because proving confluence is a common way of establishing UNR or UNC.
The > row (where > stands for true) represents the positive (yes) results for
the corresponding properties, whereas the > column represents the negative
results. For these experiments we used 120 TRSs which are comprised of the
100 Cops that at most one of the tools ACP, CoLL-Saigawa, or CSI could show
confluent in the respective version used in CoCo 2016, and an additional 20
TRSs that were used in the UNR demonstration category in CoCo 2016. Note
that the table entries overlap. For example, there are 20 problems for which CR
has been disproved and UNR has been established; these 20 problems include
the 14 problems which have been shown to satisfy UNC but not CR. The number
of problems for which none of the properties UNR, UNC, or CR was proved or
disproved is 120 + 20− 81− 43 = 16.

For experiments in the higher-order setting we again used Cops, which con-
tains 69 PRSs. CSÎ ho can show confluence of 50 and non-confluence of 10 of
these. Solving the remaining 9 systems will require serious effort—they contain
e.g. lambda calculus with surjective pairing and self-distributivity of explicit
substitution.

Acknowledgments. We thank Sarah Winkler for contributing code and expertise
related to AC termination and AC critical pairs.
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34. Regnier, L.: Une équivalence sur les lambda-termes. TCS 126(2), 281 – 292 (1994),
doi: 10.1016/0304-3975(94)90012-4

35. Rosen, B.: Tree-manipulating systems and Church-Rosser theorems. JACM 20(1),
160–187 (1973)

36. Rubio, A.: A fully syntactic AC-RPO. I&C 178(2), 515–533 (2002), doi: 10.1006/
inco.2002.3158

37. Sakai, M., Oyamaguchi, M., Ogawa, M.: Non-E -overlapping, weakly shallow, and
non-collapsing TRSs are confluent. In: Proc. 25th CADE. LNCS (LNAI), vol. 9195,
pp. 111–126 (2015), doi: 10.1007/978-3-319-21401-6_7

38. Shintani, K., Hirokawa, N.: CoLL: A confuence tool for left-linear term rewrite
systems. In: Proc. 25th CADE. LNCS (LNAI), vol. 9195, pp. 127–136 (2015),
doi: 10.1007/978-3-319-21401-6_8

39. Sternagel, C., Thiemann, R.: Formalizing Knuth-Bendix orders and Knuth-Bendix
completion. In: Proc. 24th RTA. LIPIcs, vol. 21, pp. 287–302 (2013)

40. Sternagel, C., Thiemann, R.: The certification problem format. In: Proc. 11th
UITP. EPTCS, vol. 167, pp. 61–72 (2014)

41. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Proc. 22nd TPHOLs. LNCS, vol. 5674, pp. 452–468 (2009)

42. Toyama, Y.: Commutativity of term rewriting systems. In: Fuchi, K., Kott, L. (eds.)
Programming of Future Generation Computers II, pp. 393–407. North-Holland
(1988)

43. Toyama, Y., Oyamaguchi, M.: Church-Rosser property and unique normal form
property of non-duplicating term rewriting systems. In: Proc. 4th CTRS. pp. 316–
331 (1995)

44. Zankl, H., Felgenhauer, B., Middeldorp, A.: CSI – A confluence tool. In:
Proc. 23rd CADE. LNCS (LNAI), vol. 6803, pp. 499–505 (2011), doi: 10.1007/
978-3-642-22438-6_38

45. Zankl, H., Felgenhauer, B., Middeldorp, A.: Labelings for decreasing diagrams.
JAR 54(2), 101–133 (2015), doi: 10.1007/s10817-014-9316-y

http://dx.doi.org/10.1109/LICS.1991.151658
http://dx.doi.org/10.1109/LICS.1993.287599
http://dx.doi.org/10.1016/S0304-3975(96)00173-9
http://dx.doi.org/10.1016/S0304-3975(96)00173-9
http://dx.doi.org/10.1007/3-540-58140-5_35
http://dx.doi.org/10.1007/3-540-58140-5_35
http://dx.doi.org/10.1007/3-540-45127-7_20
http://dx.doi.org/10.1016/0304-3975(94)90012-4
http://dx.doi.org/10.1006/inco.2002.3158
http://dx.doi.org/10.1006/inco.2002.3158
http://dx.doi.org/10.1007/978-3-319-21401-6_7
http://dx.doi.org/10.1007/978-3-319-21401-6_8
http://dx.doi.org/10.1007/978-3-642-22438-6_38
http://dx.doi.org/10.1007/978-3-642-22438-6_38
http://dx.doi.org/10.1007/s10817-014-9316-y

	CSI: New Evidence – A Progress Report

