
Mechanizing Confluence

dissertation

by

Julian Nagele

submitted to the Faculty of Mathematics, Computer
Science and Physics of the University of Innsbruck

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

advisor: Univ.-Prof. Dr. Aart Middeldorp

Innsbruck, October 2017

Mechanizing Confluence
Automated and Certified Analysis of

First- and Higher-Order Rewrite Systems

dissertation

Mechanizing Confluence
Automated and Certified Analysis of

First- and Higher-Order Rewrite Systems

Julian Nagele
mail@jnagele.net

October 2017

advisor: Univ.-Prof. Dr. Aart Middeldorp

mailto:mail@jnagele.net

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt durch meine eigenhändige Unterschrift, dass
ich die vorliegende Arbeit selbständig verfasst und keine anderen als die ange-
gebenen Quellen und Hilfsmittel verwendet habe. Alle Stellen, die wörtlich
oder inhaltlich den angegebenen Quellen entnommen wurden, sind als solche
kenntlich gemacht.
Die vorliegende Arbeit wurde bisher in gleicher oder ähnlicher Form noch nicht
als Magister-/Master-/Diplomarbeit/Dissertation eingereicht.

Datum Unterschrift

Abstract

This thesis is devoted to the mechanized confluence analysis of rewrite systems.
Rewrite systems consist of directed equations and computation is performed
by successively replacing instances of left-hand sides of equations by the
corresponding instance of the right-hand side. Confluence is a fundamental
property of rewrite systems, which ensures that different computation paths
produce the same result. Since rewriting is Turing-complete, confluence is
undecidable in general. Nevertheless, techniques have been developed that
can be used to determine confluence for many rewrite systems and several
automatic confluence provers are under active development. Our goal is to
improve three aspects of automatic confluence analysis, namely (a) reliability,
(b) power, and (c) versatility. The importance of these aspects is witnessed by
the annual international confluence competition, where the leading automated
tools analyze confluence of rewrite systems. To improve the reliability of
automatic confluence analysis, we formalize confluence criteria for rewriting in
the proof assistant Isabelle/HOL, resulting in a verified, executable checker
for confluence proofs. To enhance the power of confluence tools, we present a
remarkably simple technique, based on the addition and removal of redundant
equations, that strengthens existing techniques. To make automatic confluence
analysis more versatile, we develop a higher-order confluence tool, making
automatic confluence analysis applicable to systems with functional and bound
variables.

Acknowledgments
At the beginning of this thesis I want to express my gratitude to the many
people who have influenced my work and made it an exciting and, on the whole,
enjoyable journey.

First of all, I would like to thank my advisor Aart Middeldorp. His advice,
support, and encouragement were vital. I sincerely appreciate his guidance in
both research and other aspects of life, such as traveling Japan. I am grateful
to all members of the Computational Logic group, both past and present,
for taking me in and creating such a pleasant environment. Thank you for
everything you have taught me. I explicitly mention Bertram Felgenhauer, for
countless insights and occasional Albernheiten, Cezary Kaliszyk for motivating
enthusiasm, Vincent van Oostrom, for collaboration and chitchat on etymology,
Christian Sternagel, for energizing discussions and Isabelle and TEX support,
Thomas Sternagel, for being my PhD and coffee companion, René Thiemann,
for introducing me to interactive theorem proving in the first place, and Sarah
Winkler for internship encouragement and advice. Special thanks go to Harald
Zankl, for taking me under his wing and supporting me through some of the
most important steps of the way.

I had the pleasure of collaborating with many amazing people. I am indebted
to them all, in particular my fellow confluence competitors: the problem
submitters, the tool authors, and especially my CoCo co-organizers, Takahito
Aoto, Nao Hirokawa, and Naoki Nishida. I would also like to say thank you to
Nuno Lopes, who was my mentor during my internship at Microsoft Research,
for offering me a glimpse into the fascinating world of compilers and challenging
me to apply my knowledge in an unfamiliar domain.

Finally, I wish to thank my friends and family, especially my parents Barbara
and Joachim, for their constant support and unwavering belief that has enabled
me to pursue this work, and of course Maria, for all the experiences and things
we share.

This work has been supported by the Austrian Science Fund through the
FWF projects P22467 and P27528.

ix

Contents

1 Introduction 1
1.1 Rewriting and Confluence . 2
1.2 Formalization and Certification 4
1.3 Overview . 6

2 Rewriting 9
2.1 Preliminary Notions . 9
2.2 Abstract Rewrite Systems . 10
2.3 Term Rewriting . 17
2.4 Lambda Calculus . 24
2.5 Higher-Order Rewriting . 26

3 Closing Critical Pairs 31
3.1 Critical Pair Lemma . 32
3.2 Strongly Closed Critical Pairs 33
3.3 Parallel Closed Critical Pairs 36
3.4 Almost Parallel Closed Critical Pairs 45
3.5 Critical Pair Closing Systems 47
3.6 Certificates . 51
3.7 Summary . 52

4 Rule Labeling 55
4.1 Preliminaries . 56
4.2 Formalized Confluence Results 60

4.2.1 Local Peaks . 61
4.2.2 Local Decreasingness . 66

4.3 Checkable Confluence Proofs 70
4.3.1 Linear Term Rewrite Systems 70
4.3.2 Left-linear Term Rewrite Systems 72
4.3.3 Certificates . 77

xi

Contents

4.4 Assessment . 80
4.5 Summary . 81

5 Redundant Rules 83
5.1 Theory . 85
5.2 Formalization and Certification 88
5.3 Heuristics . 90
5.4 Summary . 92

6 Confluence of the Lambda Calculus 95
6.1 Nominal Lambda Terms . 96
6.2 The Z Property . 99
6.3 The Triangle Property . 103
6.4 Assessment . 104

7 Confluence of Higher-Order Rewriting 107
7.1 Higher-Order Critical Pairs . 107
7.2 Termination . 110
7.3 Orthogonality . 114
7.4 Modularity . 116
7.5 Redundant Rules . 117
7.6 Summary . 118

8 CSI and CSIˆho 119
8.1 Usage . 119
8.2 Implementation Details . 122
8.3 Experimental Results . 124

8.3.1 Term Rewrite Systems 124
8.3.2 Higher-Order Rewrite Systems 128

9 Conclusion 131
9.1 Related Work . 131
9.2 Future Work . 134

Bibliography 135

Index 149

xii

Chapter 1

Introduction
Science is knowledge which we understand so well

that we can teach it to a computer.
Donald E. Knuth

In safety-critical systems, like medical devices and spaceflight, ensuring cor-
rectness of computer programs is imperative. Notorious failures, like the
malfunctioning Therac-25 medical accelerator, the Pentium floating point divi-
sion bug, or the crash of the Ariane 5 rocket, show that modern applications
have long reached a level of complexity where human judgment and testing
are not sufficient to guarantee faultless operation.

Instead formal methods can be used to avoid subtle errors and provide a
high degree of reliability. Formal methods apply mathematics and logic to
software, formal verification employs these methods for proving correctness
of programs. We argue that in computer science formality is not optional.
Formal methods merely make that explicit, after all, programming languages
are formal languages and every program is a formula.

Recent years have seen tremendous success in formally verified software,
such as the seL4 microkernel and the CompCert C compiler. Alas, formal
verification is still very labor-intensive. It is our believe that in order for formal
verification to be widely adopted, a high degree of automation, where large
parts of the verification process can be performed at the push of a button, is
indispensable.

Consequently, we need tools that check properties of critical parts of programs
automatically. However, these tools are programs themselves, which makes
them vulnerable to the very same problems. That is, they will contain errors.
To ensure correctness of the verification process itself, a common approach is
to use so-called computational proof assistants, which are computer programs
designed for checking mathematical inferences in a highly trustworthy fashion.

1

Chapter 1 Introduction

1.1 Rewriting and Confluence

Considering the myriad of existing programming languages and their complexity,
in order to facilitate mathematical reasoning and to ensure that results are
applicable to all concrete implementations, we would like to perform correctness
proofs on a more abstract level, using a mathematical model of computation.

Rewriting is such a model of computation. It is the process of transforming
objects in a step-wise fashion, replacing equals by equals. Typically the
objects are expressions in some formal language, and the transformations are
given by a set of equations. Applied in a directed way, they describe rewrite
steps, performed by replacing instances of left-hand sides of equations by the
corresponding instance of the right-hand side. If no further replacement is
possible, we have reached the result of our computation. Consider the equations

0 + y = y 0× y = 0
s(x) + y = s(x + y) s(x)× y = y + (x× y)

Applying them from left to right, they are rewrite rules for computing addition
and multiplication on natural numbers represented as Peano numbers, i.e.,
using a zero constant and a successor function. For instance we can compute
1× 2 as follows:

s(0)× s(s(0)) = s(s(0)) + (0× s(s(0)))
= s(s(0)) + 0
= s(s(0) + 0)
= s(s(0 + 0))
= s(s(0))

In each step we instantiated an equation by replacing the variables x and y, and
after finding the left-hand side of that equation in a subexpression (indicated
by underlining), we replaced it by the corresponding right-hand side.

Specifying programs by such sets of directed equations, called rewrite systems,
is the essence of the functional programming paradigm. Indeed rewriting as
sketched above is Turing-complete and consequently, all basic properties like
termination, i.e., the question whether all computations finish in a finite amount
of time, are undecidable.

2

1.1 Rewriting and Confluence

Returning to our example equations for arithmetic we find that, given some
expression, there are often multiple possibilities to apply an equation, yielding
different results. For instance, in the second step of the derivation above, we
replaced the subexpression 0× s(s(0)) by 0 using the second equation, but we
could also have rewritten the whole expression using the third equation, which
would have resulted in s(s(0) + 0× s(s(0))). So how can we be sure that our
equations, given the same input, will always yield the same result? Often steps
even overlap, that is, they act on some common part of the expression that is
rewritten. A set of rules where where such diverging computation paths can
always be joined back together is called confluent.1

Confluence is a fundamental notion that appears in several areas of computer
science. Besides guaranteeing partial correctness, i.e., uniqueness of results,
when implementing functions by means of rewrite rules, confluence was used by
Church and Rosser to establish consistency of the λ-calculus and later by Knuth
and Bendix as the basis for the method of completion for deciding equational
theories [54]. Generalizing confluence to multiple sets of equations yields the
related notion of commutation, which can be used to study correctness of
program transformations [47,110].

Using rewriting as a model for functional programming, or in applications
like theorem proving and program transformations, needs the possibility to not
only specify functions, but to make them the objects of the rewriting process
itself. Consider for example higher-order functions in functional programming
languages, as in the following Haskell program that applies a function to each
element of a list.

map f [] = []
map f (h:t) = f h : map f t

Inspecting the second equation, one finds that f occurs as a variable on the left-
hand side, but is also applied to h as a function on the right-hand side. Similarly,
bound variables are a common feature in many programming languages and
logics. For example the following equation might be used to express a quantifier
equivalence in predicate logic:

¬∀x.P (x) = ∃x.¬P (x)

Also in mathematics many equations contain bound variables, for instance
when integrals or derivatives are present. This explains the need for a theory

1From Latin confluere: “to flow together”.

3

Chapter 1 Introduction

of higher-order rewriting, where the equations may contain bound variables
and functional variables.

1.2 Formalization and Certification

In recent years there has been tremendous progress in establishing confluence
or non-confluence of rewrite systems automatically, with a number of tools
under active development. For first-order rewriting the main tools are ACP [8],
CoLL-Saigawa [51, 96], and our own tool, CSI [66, 114]. Also for confluence
of higher-order rewriting tool support has emerged, witnessed by ACPH and
CSÎ ho, which are extensions of the first-order provers ACP and CSI, and
the new tool SOL [37]. Because confluence is undecidable, there are three
different answers these fully automatic tools can give: YES if confluence could
be established, NO if non-confluence was proved, and MAYBE (or a timeout) if
no definitive answer could be obtained.

The achievements in confluence research have enabled the confluence compe-
tition (CoCo) [4] where automated tools try to establish/refute confluence.2
The problems the tools try to solve are from the confluence problems database
(Cops, version 764 at the time of writing).3

As the power of the confluence provers grew, so did their complexity and
the proofs they produce are often complicated and large. So if we are to use
them in a formal verification context, should we trust their output? Of course
not, and indeed there have been occasions where confluence tools delivered
wrong proofs and answers. To remedy this dilemma two approaches suggest
themselves. An obvious solution would be to formally verify that the confluence
tool is correct. But this approach clearly does not scale well. Since tools use
different algorithms and are written in different languages, each would need
its own correctness proof. Even worse, after every change in a tool we would
have to adapt the corresponding proof, which severely limits the potential for
optimization. The other solution is to check the output of the tools using a
trustable, independent certifier. A certifier is a different kind of automated tool
that reads proof certificates and either accepts them as correct or rejects them
as erroneous, thereby increasing credibility of the proofs found by the confluence
tools. To ensure correctness of the certifier itself, the predominant solution is

2http://coco.nue.riec.tohoku.ac.jp/
3http://cops.uibk.ac.at

4

http://coco.nue.riec.tohoku.ac.jp/
http://cops.uibk.ac.at

1.2 Formalization and Certification

Literature Confluence Tool
implementation

rewrite system

ProofCPFIsabelle/HOL

IsaFoR CeTA

theorems &
proofs

code generation &
Haskell compiler

accept/reject

Formalization Certification

Figure 1: Certification of confluence proofs.

to use proof assistants like Coq [14] and Isabelle/HOL [74] to first formalize the
underlying theory in the proof assistant, and then use this formalization to
obtain verified, executable check functions for inspecting the certificates.

The tool CeTA [106] is such a certifier, for termination, confluence and
complexity proofs for rewrite systems. Other certifiers exist for termination
proofs, notably Rainbow [16] and CiME3 [17]. Proof certificates are specified
in the certification problem format (CPF) [99]. The main structure of a
certificate in CPF consists of an input, in our case the rewrite system whose
confluence should be certified, and a proof. Given a certificate in CPF, CeTA
will either answer CERTIFIED or return a detailed error message why the proof
was REJECTED. Its correctness is formally proved as part of IsaFoR, the Isabelle
Formalization of Rewriting. IsaFoR contains executable “check”-functions for
each formalized proof technique together with formal proofs that whenever
such a check succeeds, the technique is indeed applied correctly. Isabelle’s code-
generation facility [35], which ensures partial correctness [36], is used to obtain
a trusted Haskell program from these check functions: the certifier CeTA. The
big picture of mechanized confluence analysis is shown in Figure 1: Confluence
tools implement results from the literature and use them to automatically check
confluence of rewrite systems, producing proofs in CPF. The theorems and

5

Chapter 1 Introduction

proofs about the implemented confluence results are formalized in Isabelle/HOL,
resulting in the formal library IsaFoR, from which the certifier CeTA is generated.
CeTA can then inspect the proofs in CPF.

1.3 Overview

We contribute to three aspects of mechanized confluence analysis: reliability,
power, and versatility. To improve the reliability of confluence tools, we
formalize confluence criteria using Isabelle/HOL and integrate them into IsaFoR
and CeTA. To enhance their power, we present a technique, based on the
addition and removal of redundant rewrite rules, that strengthens existing
criteria. Finally, to make confluence analysis more versatile we develop the
higher-order confluence tool CSÎ ho.

The remainder of the thesis is organized as follows. In Chapter 2 we introduce
the basics about first- and higher-order rewriting and confluence that we will
use later on. The next two chapters present the main confluence criteria that
we formalize on top of IsaFoR. Chapter 3 is devoted to confluence criteria
that are based on resolving overlapping rewrite steps in a restricted fashion,
while Chapter 4 describes our formalization of the rule labeling, which shows
confluence provided rewrite steps can be labeled in a certain way, using labels
that are equipped with a well-founded order. In Chapter 5 we describe a simple,
but surprisingly useful technique, based on adding and removing rewrite rules
that can be simulated by other rules, which often makes other confluence
criteria more powerful. Next we look at higher-order rewriting, where we will
first discuss confluence of the λ-calculus in Chapter 6, before describing the
theory behind our higher-order confluence prover CSÎ ho in Chapter 7. Both
CSI and CSÎ ho are described in detail in Chapter 8, where we also provide an
extensive experimental evaluation.

A large part of this work is devoted to formalizing confluence criteria in
Isabelle/HOL. For presentation in this thesis we use different levels of abstraction.
Code listings display parts of the formalization directly generated from the
formal Isabelle text (using syntax translations for pretty printing), while in the
main text we prefer to use standard mathematical notation and descriptions.
Whenever this leads to noteworthy discrepancies they will be pointed out
along the way. We hope that this mix of standard rewriting notation and
formalization snippets will appeal to readers from both backgrounds.

6

1.3 Overview

We provide the Isabelle/HOL theory files for the formalizations from the
subsequent chapters as part of IsaFoR. To be able to browse these files one
needs a working Isabelle installation as well as the archive of formal proofs,
which is available at

http://www.isa-afp.org/

The IsaFoR/CeTA version that corresponds to formalizations described this thesis
is 2.31. It is available from

http://cl-informatik.uibk.ac.at/isafor

For further compilation instructions, we refer to the README file in the IsaFoR-
sources.

7

http://www.isa-afp.org/
http://cl-informatik.uibk.ac.at/isafor

Chapter 2

Rewriting

Well, when all is said and done, the only thing
computers can do for us is to manipulate symbols

and produce results of such manipulations.
Edsger W. Dijkstra (EWD 1036)

In this chapter we introduce several rewriting formalisms. We will consider
first-order term rewrite systems, the lambda calculus, and higher-order rewrite
systems, which can be understood as combination of the former two. To deal
with the common notions of all three in a uniform manner, we first introduce
abstract rewrite systems. They are abstract in the sense that all the potential
structure of the objects that are subject to rewriting is abstracted away. While
we do strive to keep this thesis self-contained, the material is quite dense,
and so familiarity with the basics of rewriting [11, 105] and (typed) lambda
calculi [12, 13] will be helpful.

2.1 Preliminary Notions

This section gives an overview of general terminology and fixes common notation
that will be used later on. We denote the set of natural numbers by N and the
set of positive natural numbers by N+. Given sets A1, . . . , An (for some n ∈ N)
by A1 × · · · ×An we denote the cartesian product:

A1 × · · · ×An = {(a1, . . . , an) | ai ∈ Ai for all 1 ⩽ i ⩽ n}

An n-ary relation R over A1, . . . , An is a subset of A1 × · · · × An. If n = 2
then R is called a binary relation and if R ⊆ A × A then we say that R is
a binary relation over A. For a binary relation R its inverse is defined by

9

Chapter 2 Rewriting

R−1 = {(b, a) | (a, b) ∈ R}.1 The identity relation idA on A is {(a, a) | a ∈ A}.
Given two binary relations R ⊆ A×B and S ⊆ B ×C we write R · S for their
composition:

R · S = {(a, c) | (a, b) ∈ R and (b, c) ∈ S for some b ∈ B}

Let R be a binary relation over A. For n ∈ N by Rn we denote the n-fold
composition of R, i.e., R0 = idA and Rn+1 = R · Rn. The reflexive closure
of R is R= = R ∪ idA, the transitive closure is R+ = ⋃

n⩾1 Rn, the reflexive
transitive closure is R∗ = R+ ∪ idA, and the symmetric closure of R is R∪R−1.

The multiset extension of a binary relation >, denoted >mul, is defined as
X ⊎Y >mul X ⊎Z if Y ̸= ∅ and for all z ∈ Z there is a y ∈ Y such that y > z,
where ⊎ denotes the sum of multisets.

2.2 Abstract Rewrite Systems
To model computations in an abstract way we consider a set of objects together
with a binary relation that describes transformations on these objects.

Definition 2.1. An abstract rewrite system (ARS) is a pair A = (A, R)
consisting of a set A and a binary relation R on A.

In IsaFoR, an ARS is just is a binary relation where the domain is left implicit
in the type. When no confusion will arise we will sometimes also do this in
textual descriptions and identify an ARS with its binary relation. To indicate
that rewriting is a directed transformation process the relation R is usually
written as → and instead of (a, b) ∈ → we write a→ b and call a→ b a rewrite
step. Taking the transitive reflexive closure of → yields rewrite sequences. A
finite rewrite sequence is a non-empty sequence (a1, . . . , an) of elements in A
such that ai → ai+1 for all 1 ⩽ i < n. Given objects a, b ∈ A we say that a
rewrites to b if a →∗ b and call b a reduct of a or reachable from a. If there
is a rewrite step from a to some b we say that a is reducible. Objects that
are not reducible are called normal forms and we write NF(A) or NF(→) for
the set of all normal forms of A. If a has the normal form b, i.e., if a →∗ b
and b ∈ NF(→) we write a→! b. Objects a and b are joinable, written a ↓ b,

1When convenient we mirror the notation of a relation to denote its inverse, for instance we
write ⩽ instead of ⩾−1.

10

2.2 Abstract Rewrite Systems

a bc d

Figure 2: An abstract rewrite system.

if they have a common reduct, i.e., if there is an object c with a →∗ c ∗← b.
They are meetable if they have a common ancestor, i.e., meetability is defined
as ↑ = ∗← ·→∗. We write ↔ for the symmetric closure of →. A conversion
between objects a and b is a sequence (c1, . . . , cn) such that c1 = a, cn = b,
and ci ↔ ci+1 for all 1 ⩽ i < n. We then write a ↔∗ b and say that a and b
are convertible. An infinite rewrite sequence is an infinite sequence of objects
(ai)i∈N such that ai → ai+1 for all i ∈ N.

Example 2.2. Consider the ARS A = (A,→) with A = {a, b, c, d} and
→ = {(a, b), (b, a), (a, c), (b, d)}, depicted as directed graph in Figure 2. In this
ARS we have for example a→! d, a→∗ a, and b ↓ c. The objects c and d are
convertible normal forms.

These basic definitions are enough to discuss many of the commonly studied
global properties of ARSs. When an ARS has a property we also often say that
the underlying relation has that property, leaving the set of objects implicit.

Definition 2.3. An ARS is terminating, if it admits no infinite rewrite se-
quences.

The ARS from Example 2.2 is not terminating, because the sequence a→
b → a → b → · · · constitutes an infinite rewrite sequence. We now turn to
confluence and various related properties.

Definition 2.4. An ARS A = (A,→) is confluent, if whenever t ∗← s→∗ u
then there is an object v such that t →∗ v ∗← u, or more succinctly, → is
confluent if

∗← · →∗ ⊆ →∗ · ∗←

Confluence is commonly drawn as the diagram shown in Figure 3(a), where
solid lines indicate universal quantification and dashed lines indicate existential
quantification. In light of this depiction a situation s ∗← · →∗ t is called a
peak. Such a peak is called joinable if its endpoints s and t are joinable, i.e., if
there is a so-called valley s→∗ · ∗← t.

11

Chapter 2 Rewriting

·

· ·

·

∗ ∗

∗ ∗

(a) Confluence.

· ·

·

∗

∗ ∗

(b) Church-Rosser.

·

· ·

·

∗ ∗

(c) Local confluence.

·

· ·

·
(d) Diamond.

·

· ·

·

= ∗

(e) Strong confluence.

·

· ·

·

∗

∗ ∗

(f) Semi-confluence.

Figure 3: Confluence and various related properties.

When it was originally studied confluence was stated in the following different
but equivalent formulation, named after Alonzo Church and J. Barkley Rosser,
who first showed the property for the λ-calculus.

Definition 2.5. An ARS A = (A,→) has the Church-Rosser property (CR)
if

↔∗ ⊆ →∗ · ∗←

The Church-Rosser property is depicted in Figure 3(b). That it is equivalent
to confluence is not hard to show.

Lemma 2.6. An ARS is confluent if and only if it has the Church-Rosser
property.

Proof. That CR implies confluence is trivial, since every peak obviously is a
conversion. For the other direction assume s↔n t and proceed by induction
on n. If n = 0 then s = t and obviously s ↓ t. Otherwise write s ↔ t ↔n u.
From the induction hypothesis we obtain v with t →∗ v ∗← u. If s → t this

12

2.2 Abstract Rewrite Systems

immediately yields s→∗ v ∗← u. If s← t then we have the peak s← t→∗ v
and by confluence s ↓ v, which with u→∗ v yields the desired s ↓ u.

Because we usually do not deal with finite ARSs, there will in general be
infinitely many peaks to check when we try to establish confluence. Since we
are interested in automatic confluence checking we will need to break them
down in some finite criteria. A first idea, on the abstract level, might be to
localize the test, i.e., to only consider peaks consisting of single steps, so-called
local peaks.

Definition 2.7. An ARS A = (A,→) is locally confluent if

← · → ⊆ →∗ · ∗←

The diagram for local confluence, also known as the weak Church-Rosser
property, is drawn in Figure 3(c). Unfortunately joinability of all local peaks
is not sufficient for confluence in general.

Example 2.8. The ARS from Example 2.2 is locally confluent: its two non-
trivial local peaks c← a→ b and a← b→ d are both joinable. It is however
not confluent, since it admits the peak d ∗← a →∗ c, but c and d are not
joinable.

When trying to impose restrictions on an ARS to still get a relationship
between local confluence and confluence one realizes that the problem goes
away for terminating systems. This is captured in the following famous lemma,
due to Newman.

Lemma 2.9 (Newman [69]). A terminating ARS is confluent if it is locally
confluent.

Proof. Assume t ∗← s →∗ u, we perform well-founded induction on s with
respect to →, which is well-founded, since the ARS in question is terminating,
to show t ↓ u. If s = t or s = u then trivially t ↓ u, so assume there is at least
one step on both sides: t ∗← t′ ← s → u′ →∗ u. From local confluence we
obtain t′ →∗ v ∗← u′ for some v. This yields the new peak t ∗← t′ →∗ v. Since
s→ t′ we can apply the induction hypothesis and obtain a w with t→∗ w ∗← v.
We are left with the peak w ∗← v ∗← u′ →∗ u, which, since s→ u′, we again
close using the induction hypothesis.

13

Chapter 2 Rewriting

So for terminating systems we can reduce showing confluence to local conflu-
ence.2 However many systems of interest will not be terminating and so we
need a different approach. A common one is to restrict attention to local peaks
by also restricting the joining sequences, employing one of the following two
properties.

Definition 2.10. An ARS A = (A,→) has the diamond property if

← · → ⊆ → · ←

It is strongly confluent if
← · → ⊆ →= · ∗←

The diamond property and strong confluence are depicted in Figures 3(d)
and 3(e) respectively. Clearly a relation is confluent if its reflexive transitive
closure has the diamond property and any relation that has the diamond
property is strongly confluent. Beware of symmetry in the diagram for strong
confluence. If there is a peak t← s→ u, and consequently a valley t→= · ∗← u,
then there is also the symmetric peak u ← s → t and hence there must be
a valley u →= · ∗← t, making strong confluence only slightly weaker than
requiring ← · → ⊆ →= · =←. The next lemma justifies the name strong
confluence.

Lemma 2.11. Any strongly confluent ARS is confluent.

We defer the proof of this statement for a bit and will instead carry it out
in the more general setting of commutation. Commutation is the natural
generalization of confluence to two relations.

Definition 2.12. Two relations →1 and →2 commute if
∗
1← · →∗

2 ⊆ →∗
2 · ∗

1←

They locally commute if
1← · →2 ⊆ →∗

2 · ∗
1←

They strongly commute if

1← · →2 ⊆ →=
2 · ∗

1←
2In fact when moving to term rewriting we will see that local confluence and consequently
also confluence are even decidable for terminating systems.

14

2.2 Abstract Rewrite Systems

Obviously confluence of a relation is equivalent to it commuting with itself.
Like for confluence we will want to restrict attention to local peaks by showing
strong commutation. Note that strong commutation is not symmetric, i.e.,
strong commutation of →1 and →2 does not imply strong commutation of →2
and →1.

Example 2.13. Consider the two ARSs →1 and →2 defined by the following
steps:

a→1 b c→1 d d→1 b a→2 c

Then →1 and →2 strongly commute because the peak b 1← a→2 c is joinable
as b 1← d 1← c. However, for the symmetric peak c 2← a →1 b there is no
valley of the shape →=

1 · ∗
2←, since b ∈ NF(→2) and the only step from c with

→1 is c→1 d. Hence →2 and →1 do not strongly commute.

To show that strong commutation implies commutation we proceed in two
steps—we first partially localize the diagram.

Definition 2.14. Two relations →1 and →2 semi-commute if

∗
1← · →2 ⊆ →∗

2 · ∗
1←

Instantiating →1 and →2 to the same relation yields the related notion of
semi-confluence, shown in Figure 3(f). Semi-commutation turns out to be
equivalent to commutation.

Lemma 2.15. Two binary relations →1 and →2 semi-commute if and only if
they commute.

Proof. That commutation implies semi-commutation is immediate from the
definitions. For the other direction assume t ∗

1← s →∗
2 u. Then there is an

n such that s →n
2 u. We show t →∗

2 · ∗
1← u by induction on n. If n = 0

then s = u and we are done. Otherwise write t ∗
1← s →2 u′ →n

2 u. From
semi-commutation we obtain a v with t→∗

2 v ∗
1← u′. This leaves us with the

peak v ∗
1← u′ →n

2 u, which, by the induction hypothesis, can be joined as
v →∗

2 · ∗
1← u. Together with t→∗

2 v this yields the desired t→∗
2 · ∗

1← u.

Note that Lemma 2.15 entails that, unlike strong commutation, semi-
commutation is symmetric, despite the asymmetry in its definition.

15

Chapter 2 Rewriting

Lemma 2.16. Let →1 and →2 be binary relations. If →1 and →2 strongly
commute then they commute.

Proof. We show semi-commutation of →1 and →2. Assume t ∗
1← s →2 u.

Then there is a natural number n with t n
1← s →2 u. We show t →∗

2 · ∗
1← u

by induction on n. If n = 0 then s = t and we are done. Otherwise we have
t n

1← t′ 1← s →2 u. Strong commutation yields a v with t′ →=
2 v ∗

1← u. We
consider two cases. If t′ = v then u →∗

1 t′ →∗
1 t. Otherwise t′ →2 v and we

close the peak t n
1← t′ →2 v by the induction hypothesis as t→∗

2 · ∗
1← v and

using u→∗
1 v.

To conclude commutation from strong commutation it is often useful to not
use the relations in question directly but auxiliary relations that lie between
one-step and many-step rewriting. The following lemma shows how to achieve
this.

Lemma 2.17. Let →1, →2, →1′, and →2′ be binary relations. If →1 ⊆
→1′ ⊆ →∗

1 and →2 ⊆ →2′ ⊆ →∗
2 and →1′ and →2′ commute then →1 and →2

commute.

Proof. Straightforward induction proofs show→∗
1 =→∗

1′ and→∗
2 =→∗

2′ . Then
commutation of →1 and →2 follows from commutation of →1′ and →2′ .

Instantiating commutation to confluence yields a corresponding useful corol-
lary.

Corollary 2.18. Let →1 and →2 be binary relations. If →1 ⊆ →2 ⊆ →∗
1 and

→2 is confluent then →1 is confluent.

The following important connection between confluence and commutation
allows to obtain confluence of the union of two confluent relations provided
they commute.

Lemma 2.19 (Hindley [38]). Let →1 and →2 be confluent relations. If →1
and →2 commute then →1 ∪ →2 is confluent.

Proof. By splitting the rewrite sequences in a peak u ∗
1 ∪ 2← s →∗

1 ∪ 2 t and
repeatedly filling the diagrams using the confluence and commutation assump-
tions:

16

2.3 Term Rewriting

· · · ·

· · · ·

· · · ·

1
∗

1
∗

2
∗

1
∗

1
∗

2
∗

1
∗

1
∗

2
∗

2 ∗

1 ∗

2 ∗

1 ∗

2 ∗

1 ∗

2 ∗

1 ∗

We now turn our attention to concrete instantiations of abstract rewriting.
The first one we consider results from using first-order terms as objects and a
rewrite relation generated from a set of rules.

2.3 Term Rewriting
A signature F is a set of function symbols. Each function symbol f ∈ F comes
with an associated arity ar(f) ∈ N. Function symbols with arity 0 are called
constants. With V we denote an infinite set of variables disjoint from F .

Definition 2.20. The set of terms T (F ,V) over a signature F and a set of
variables V, is defined inductively by

• if x ∈ V then x ∈ T (F ,V), and

• if f ∈ F with ar(f) = n and ti ∈ T (F ,V) for 1 ⩽ i ⩽ n then
f(t1, . . . , tn) ∈ T (F ,V).

We write Var(t) for the set of variables occurring in the term t and denote
the number of occurrences of the variable x in term t by |t|x.

In IsaFoR variables, function, symbols, and terms are represented as types
instead of sets. The datatype for terms is given in Listing 1, showing how
terms are built over function symbols of type α and variables of type β. The
main difference to the textbook definition is that there is no arity restriction
on function applications. Consequently the name of a function symbol alone,
is not enough to identify it uniquely, since the same name could be used with

17

Chapter 2 Rewriting

datatype (α, β) term = Var β | Fun α (α, β) term list

Listing 1: First-order terms in IsaFoR.

different arities. Thus, whenever the signature is essential IsaFoR uses pairs
(f, n) of function symbols and arities.

We often need to address specific subterms of a term. To this end we use
positions, strings that encode the path from the root of the term to the subterm
in question.

Definition 2.21. Positions are strings of positive natural numbers, i.e., ele-
ments of N∗

+. We denote the root position, i.e., the empty sequence, by ϵ. A
position q is above a position p, written q ⩽ p, if qq′ = p for some position q′, in
which case p\q is defined to be q′. Furthermore q is strictly above p, written as
q < p, if q ⩽ p and q ̸= p. If q is above p we also say that p is below q. Finally,
positions q and p are parallel, written as q ∥ p, if neither q ⩽ p nor p < q.

Definition 2.22. The set of positions in a term t ∈ T (F ,V) is defined as

Pos(t) =
{
{ϵ} if t is a variable
{ϵ} ∪ {iq | 1 ⩽ i ⩽ n and q ∈ Pos(ti)} if t = f(t1, . . . , tn)

The subterm of t at position p ∈ Pos(t) is defined as

t|p =
{

t if p = ϵ

ti|q if p = iq and t = f(t1, . . . , tn)

The set of function symbol positions of t is PosF(t) = {p ∈ Pos(t) | t|p /∈ V}
and the set of variable positions of t is PosV(t) = Pos(t) \ PosF (t). The size of
t is defined as the size of Pos(t) and denoted by |t|.

A central operation on terms is replacing subterms. To this end we use
contexts, terms containing holes that can be filled by other terms.

Definition 2.23. Let □ be a constant symbol with □ /∈ F , called hole. A
context is a term in T (F ∪ {□},V), with exactly one occurrence of □. A
multihole context is a term that may contain an arbitrary number of holes.

18

2.3 Term Rewriting

datatype (α, β) ctxt = Hole
| More α (α, β) term list (α, β) ctxt (α, β) term list

datatype (α, β) mctxt = MVar β | MHole | MFun α (α, β) mctxt list

Listing 2: Contexts and multihole contexts in IsaFoR.

In IsaFoR contexts and multihole contexts are not defined as special terms but
as separate datatypes as shown in Listing 2. This facilitates proofs by induction
and directly enforces the restriction that contexts contain exactly one hole. On
the other hand special conversion functions between, for example multihole
contexts without holes and terms, are now required, but in a formalization
environment the cleaner separation is worth the effort.

Definition 2.24. For a term t and position p ∈ Pos(t) the context obtained
by replacing t|p with the hole, t[]p, is defined by

t[]p =
{
□ if p = ϵ

f(t1, . . . , ti[]q, . . . , tn) if t = f(t1, . . . , tn) and p = iq

Definition 2.25. For a context C and term t by C[t] we denote the term
obtained by filling the hole in C with t:

C[t] =
{

t if C = □

f(t1, . . . , C ′[t], . . . , tn) if C = f(t1, . . . , C ′, . . . , tn)

Moreover t[s]p denotes the term obtained by replacing the subterm of t at
position p by s, i.e., t[s]p = (t[]p)[s].

If C[s] = t for some context C then s is called a subterm of t and we write
s ⊴ t. If additionally C ̸= □ then s is a proper subterm of t, which is denoted
by s ◁ t.

Filling the holes in a multihole context C with terms t1, . . . , tn is more
involved, because we have to partition the list of terms according to the
distribution of holes in C.

Definition 2.26. For a multihole context C containing n holes and a list of

19

Chapter 2 Rewriting

terms t1, . . . , tn we define C[t1, . . . , tn] by the following equations:

□[t] = t

x[] = x

f(C1, . . . , Cc)[t1, . . . , tn] = f(C1[t1], . . . , Cc[tc])

where t1, . . . , tc is a partitioning of t1, . . . , tn such that the length of ti matches
the number of holes in Ci for all 1 ⩽ i ⩽ c.

Dealing with this definition and multihole contexts in IsaFoR requires some
non-trivial overhead. One needs to take care of for instance partitioning,
flattening, or shortening lists of terms. While cumbersome and time-consuming
the reasoning involved usually does not yield new insights and so we will not
elaborate on in the text.

We now turn to instantiating variables in terms.

Definition 2.27. A substitution is a mapping σ from V to T (F ,V). We write
tσ for the result of applying σ to the term t:

tσ =
{

σ(x) if t = x

f(t1σ, . . . , tnσ) if t = f(t1, . . . , tn)

For terms s and t, we call s an instance of t and say that t matches s if there
is a substitution σ such that s = tσ. A substitution µ is unifier of s and t if
sµ = tµ in which case s and t are called unifiable. A most general unifier µ is
a unifier with σ = µρ for some ρ for any other unifier σ.

Finite substitutions, i.e., mappings with x ̸= σ(x) for finitely many x ∈ V,
are often written in the form {x1 7→ t1, . . . , xn 7→ tn}. When σ = {x 7→ s} we
also write t [x := s] for tσ.

Relations that are preserved under contexts and under substitutions are of
special interest.

Definition 2.28. A binary relation R on terms is closed under contexts if
s R t implies C[s] R [t] for all terms s and t and all contexts C. It is closed
under substitutions if for all substitutions σ we have sσ R tσ whenever s R t. A
rewrite relation is a binary relation on terms that is closed under both contexts
and substitutions.

20

2.3 Term Rewriting

(ℓ, r) ∈ R
(ℓ, r) ∈ rstep R

(s, t) ∈ rstep R
(s · σ, t · σ) ∈ rstep R

(s, t) ∈ rstep R
(C ⟨s⟩, C ⟨t⟩) ∈ rstep R

Listing 3: The definition of rewriting in IsaFoR.

rstep_r_c_s r C σ = {(s, t). s = C ⟨fst r · σ⟩ ∧ t = C ⟨snd r · σ⟩}

rstep_r_p_s R r p σ =
{(s, t). p ∈ poss s ∧ r ∈ R ∧ s |_ p = fst r · σ ∧ t = (s []_ p)⟨snd r · σ⟩}

Listing 4: Alternative characterizations of rewriting in IsaFoR.

We are now ready to define term rewriting.

Definition 2.29. A rewrite rule is a pair of terms (ℓ, r), written ℓ → r. A
term rewrite system (TRS) is set of rewrite rules. For a TRS R we define →R
to be the smallest rewrite relation that contains R and associate with it the
ARS (T (F ,V),→R).

Put differently, a term s rewrites to a term t using the TRS R if we can find
a rule ℓ→ r in R, a context C and a substitution σ such that s = C[ℓσ] and
t = C[rσ]. Equivalently, we have s →R t if s|p = ℓσ and t|p = rσ, for a rule
ℓ→ r in R, a position p, and a substitution σ. When the rewrite step takes
place at the root, i.e., p = ϵ, we write s→ϵ

R t. Similar to ARSs we will often
identify a TRS R with its rewrite relation →R. Note that we do not impose
the common variable conditions, i.e., the restriction that ℓ is not a variable
and all variables in r are contained in ℓ.

In IsaFoR →R is defined as an inductive set by the rules show in Listing 3,
where rstep R is IsaFoR’s notation for →R. Alternative characterizations,
based on finding a redex in a term are also available, see Listing 4.

Many confluence results depend on variables occurring with restricted multi-
plicity in rewrite rules.

Definition 2.30. A term t is linear if every variable occurs at most once in
it. A rewrite rule ℓ → r is left-linear if ℓ is linear, right-linear if r is linear,
and linear if it is both left- and right-linear. A TRS is (left-, right-)linear
if all its rules are (left-, right-)linear. A rewrite rule ℓ → r is duplicating if
|ℓ|x < |r|x for some x ∈ V. By Rd and Rnd, we denote the duplicating and
non-duplicating rules of a TRS R, respectively.

21

Chapter 2 Rewriting

We will sometimes consider rewriting with a TRS R relative to some other
TRS S, which intuitively means that arbitrarily many S-steps are allowed
between R-steps.

Definition 2.31. A relative TRS R/S is a pair of TRSs R and S with the
induced rewrite relation →R/S =→∗

S · →R · →∗
S .

Sometimes we identify a TRS R with the relative TRS R/∅ and vice versa,
which is justified by →R/∅ =→R.

The extra structure of terms as objects allows to define rewrite relations that
lie between one and many step rewriting, which will be useful in connection
with Lemma 2.17. We will consider two such relations, the first allows to
contract multiple parallel redexes in one go.

Definition 2.32. For a TRS R, the parallel rewrite relation −→∥ R is defined
inductively by

• x −→∥ R x if x is a variable,

• ℓσ −→∥ R rσ if ℓ→ r ∈ R, and

• f(s1, . . . , sn) −→∥ R f(t1, . . . , tn) if f is a function symbol of arity n and
si −→∥ R ti for all 1 ⩽ i ⩽ n.

The following properties of parallel rewriting are well-known and follow by
straightforward induction proofs.

Lemma 2.33. The following properties of −→∥ hold:

• →R ⊆ −→∥ R ⊆ →∗
R,

• s −→∥ R s for all terms s,

• if xσ −→∥ R xτ for all x ∈ Var(s) then sσ −→∥ R sτ .

When not only allowing parallel redexes to be contracted simultaneously, but
also nested ones we get what are commonly known as multisteps or development
steps. For a binary relation R on terms we write σ R σ′ if σ(x) R σ′(x) for all
variables x.

Definition 2.34. For a TRS R the multistep rewrite relation −→○ R is defined
inductively by

22

2.3 Term Rewriting

• x −→○ R x if x is a variable,

• ℓσ −→○ R rσ′ if ℓ→ r ∈ R and σ, σ′ are substitutions with σ −→○ R σ′, and

• f(s1, . . . , sn) −→○ R f(t1, . . . , tn) if f is a function symbol of arity n and
si −→○ R ti for 1 ⩽ i ⩽ n.

Most of the confluence and commutation results in this work are based on
(left-)linearity and restricted joinability of critical pairs. Critical pairs arise
from situations where two redexes overlap with each other. The definition we
use is slightly non-standard in two regards. First we consider critical pairs
for two rewrite systems to use them in a commutation setting. Second we do
not exclude root overlaps of a rule with (a variant of) itself as is commonly
done. This allows us to dispense with the variable condition that all variables
in the right-hand side of a rule must also occur on the left. Moreover, if a TRS
does satisfy the condition then all extra critical pairs that would normally be
excluded are trivial.

Definition 2.35. A critical overlap (ℓ1 → r1, C, ℓ2 → r2)µ of two TRSs R1
and R2 consists of variants ℓ1 → r1 and ℓ2 → r2 of rewrite rules in R1 and R2
without common variables, a context C, such that ℓ2 = C[ℓ′] with ℓ′ /∈ V and a
most general unifier µ of ℓ1 and ℓ′. From a critical overlap (ℓ1 → r1, C, ℓ2 → r2)µ

we obtain a critical peak Cµ[r1µ] R1← Cµ[ℓ1µ]→R2 r2µ and the corresponding
critical pair Cµ[r1µ] R1←⋊→R2 r2µ. If C = □, the corresponding critical pair
is called an overlay and written as r1µ R1←⋉⋊→R2 r2µ, otherwise it is called
an inner critical pair , and denoted using R1←·⋊→R2 . When considering the
critical pairs of a TRS R with itself we drop the subscripts and write ←⋊→
instead of R←⋊→R. We call a critical pair joinable if the peak from which it
originates is joinable.

The next example shows that if the variable condition is not satisfied, critical
pairs that arise from overlapping a rule with itself at the root are essential.

Example 2.36. Consider the linear rewrite system R consisting of the single
rule a → y. Because of the peak x ← a → y, R is not confluent and indeed
x←⋊→ y is a non-joinable critical pair according to our definition.

23

Chapter 2 Rewriting

2.4 Lambda Calculus

We now turn to higher-order systems, i.e., systems with bound variables and
functions as first-class citizens. The prototypical higher-order system is the
lambda calculus, which we consider in its simply typed incarnation. In the next
section it will then serve as meta-language for general higher-order rewriting.

For a (formalized) treatment of the untyped lambda calculus see Chapter 6,
for a general introduction to the lambda calculus we refer to [12].

Definition 2.37. Given a set of base types, B, the set of simple types over B,
denoted TB is defined inductively as follows:

• every base type ι ∈ B is a simple type,

• if σ and τ are simple types, then σ → τ is a simple type.

A type3 with at least one occurrence of → is called functional. Following
standard conventions → is right-associative and outermost parentheses are
omitted. We denote types by σ, τ, ρ, . . . and base types by ι, κ.

Let V be a set of typed variables, containing countably many variables of
each type. When the type of variable can be inferred from the context or is of
no interest we often omit it and write x instead of x : σ. Simply typed lambda
terms are built from variables, λ-abstraction and application.

Definition 2.38. The set of typed lambda terms, Λ→, is defined inductively
by the following rules:

x : σ ∈ V
x : σ ∈ Λ→

u : τ → σ t : τ

u t : σ ∈ Λ→
x : τ ∈ V t : ρ

λx. t : τ → ρ ∈ Λ→

When s : σ ∈ Λ→ we say that s has type σ. The abstraction λx. s binds
the variable x in s. A variable that is not bound is free. We collect all free
variables of s in fv(s) and all bound variables in bv(s). A term is linear if no
free variable occurs in it more that once. We adopt the usual conventions for
notation: application is left associative and abstraction is right associative. We
write λx1 x2 . . . xn. s instead of λx1. λx2. . . . λxn. s.

3Since we do not consider any other kind of types, we just say type instead of simple type
from now on.

24

2.4 Lambda Calculus

Term equality is modulo α, that is, renaming of bound variables. Hence we
tacitly assume bound variables to be fresh whenever necessary—the variable
convention. If we want to state α-conversion explicitly we write s =α t, for
instance λx. x =α λy. y.

Substitutions are like in the first-order setting, except they now take types
and bound variables into account.
Definition 2.39. A substitution is a type-preserving mapping from variables
to terms. The capture-avoiding application of a substitution σ to a term t is
denoted by tσ.

Capture-avoiding means that we use α whenever necessary. For example
(λx. y) [y := x] = (λz. x), since λx. y =α λz. y. See Definition 6.1 for a formal
definition of capture avoiding substitution. Contexts are also adapted to types.
Definition 2.40. We assume special symbols □σ for each type σ, called holes.
A context is a term C containing exactly one occurrence of a hole □σ. The
replacement of □σ in a context C, by a term s of type σ is denoted by C[s].

Note that here s may contain variables bound in C. For instance, for
C = λx. □ι and x : ι we have C[x] = λx. x. Lambda terms are rewritten using
β-reduction and η-expansion.
Definition 2.41. The β-rule is defined by the following schema:

(λx. s) t→ s [x := t]

Here the expression (λx. s) t is called β-redex. The β-step relation, denoted
by s→β t, is the smallest relation the contains the β-rule and is closed under
contexts.

It is well-known that β-reduction is terminating and confluent in the simply
typed λ-calculus [13]. We denote the unique β-normal form of a term s by s ↓β .
Additionally we will use η-expansion. Since, in the presence of β-reduction,
η-expansion is not terminating in general, we use a restricted version, which
guarantees termination.
Definition 2.42. Let C be a context. The η-expansion relation is defined by

C[s]→η C[λx. s x]

if s is of functional type σ → τ , x : σ is a fresh variable, and no β-redex is
created.

25

Chapter 2 Rewriting

Avoiding creation of β-redexes ensures termination of →β ∪→η. Note that
no β-redex is created if s is neither an abstraction nor the left-hand side of
an application. That is, the two situations s t →η (λx. s x) t →β s t and
λy. s[y]→η λx. (λy. s[y]) x→β λx. s[x] =α λy. s[y] are avoided.

Using this η-expansion every term s has a unique η-long form, which we
denote by s ↑η. The unique η-long β-normal form of s is denoted by s ↕ηβ . One
can think of η-expansion as making the arguments of a term with functional
type explicit by using extensionality. In particular for a term s of type
σ1 → · · · → σn → τ we have s ↑η = λx1, . . . xn. s x1 · · ·xn, which when
applied to arguments t1, . . . , tn, β-reduces to the expected s t1 · · · tn. The ARS
associated with the simply typed lambda calculus is (Λ→,→β ∪→η).

Based on the simply typed λ-calculus we now introduce higher-order rewrit-
ing, where terms additionally contain typed function symbols, which will get
their meaning by higher-order rewrite rules.

2.5 Higher-Order Rewriting

We are now ready to introduce higher-order rewriting. To extend first-order
term rewriting with a binding mechanism and functional variables we use a
metalanguage and express all binding mechanisms via this metalanguage. Fol-
lowing Nipkow [64,70] we use the simply-typed lambda calculus with constants
as metalanguage. Following van Oostrom and van Raamsdonk [77, 87] we refer
to this metalanguage as the substitution calculus. Another possibility would
be to use the untyped lambda-calculus using complete developments, which
yields the closely related formalism of Combinatory Reduction Systems [53].

Definition 2.43. A signature is a set of typed constants F . The set of pre-
terms is defined inductively by extending the rules for typed λ-terms from
Definition 2.38 with

f : σ ∈ F
f : σ

A term is a pre-term in η-long β-normal form, i.e., every pre-term s corresponds
to a unique term s ↕ηβ.4

4An alternative, equivalent definition is to define terms as equivalence classes modulo βη
and choosing the normalized pre-term as representative.

26

2.5 Higher-Order Rewriting

To ease readability terms are often written in algebraic notation. That is,
a nested application s t1 · · · tn is written as s(t1, . . . , tn). We will make use of
this convention throughout the remainder of this thesis.

Definition 2.44. Let s be a term. Then s is of the form λx1 . . . xn. a(s1, . . . , sn)
with a ∈ V ∪ F . The top of s is defined as tp(s) = a.

Subterms and positions are defined as follows for higher-order terms.

Definition 2.45. Let s be a term. The set of subterms of s is defined as

Sub(s) =
{
{s} ∪ Sub(t) if s = λx. t

{s} ∪
⋃n

i=1 Sub(si) if s = a(s1, . . . , sn)

We write s⊵ t for t ∈ Sub(s) and s▷ t for s⊵ t and s ̸= t. The set of positions
of s is defined by

Pos(s) =
{
{ϵ} ∪ {1p | p ∈ Pos(t)} if s = λx. t

{ϵ} ∪ {ip | 1 ⩽ i ⩽ n and p ∈ Pos(si)} if s = a(s1, . . . , sn)

We again denote the subterm of s at position p ∈ Pos(s) by s|p, i.e.,

s|p =


s if p = ϵ

t|q if p = 1q and s = λx. t

si|q if p = iq and s = a(s1, . . . , sn)

Definition 2.46. A rewrite rule over F and V is a pair of terms ℓ → r in
T (F ,V) such that ℓ and r have the same base type and all free variables of r
occur as free variables in ℓ and tp(ℓ) is not a variable. A higher-order rewrite
system (HRS) consists of a signature F and a set R of rules.

Definition 2.47. For a rule ℓ→ r ∈ R, a substitution σ and a context C, the
rewrite relation →R is defined by

C[ℓσ ↕ηβ]→R C[rσ ↕ηβ]

When this definition was conceived, it was unknown whether higher-order
matching and thus this rewrite relation are decidable. Thus attention is
commonly restricted to so-called patterns.

27

Chapter 2 Rewriting

Definition 2.48. A term s is called a pattern if for all subterms of s of the
form x(t1, . . . , tn) with x ∈ fv(s) and n > 0, all ti are the η-long forms of
different bound variables. An HRS R is a pattern rewrite system (PRS) if for
all ℓ→ r ∈ R, ℓ is a pattern.
Example 2.49. Consider a single base type o, a signature consisting of c : o
and f : o → o and variables x : o, y : o, z : o → o, v : o → o → o and
w : (o → o) → o. Then λx. f(x), x, λz. w(λx. z(x)) and λx y. v(x, y) are
patterns, while z(c), λx. v(x, x), λx y. v(y, c) and λx. w(v(x)) are not.

The main result about patterns is due to Miller [65]. It states that unification,
and hence also matching, is decidable for patterns and that if they are unifiable,
a most general unifier can be computed. Qian showed that patterns can
be unified in linear time [86]. Although, Stirling recently showed [100] that
higher-order matching is indeed decidable, this does not mean that PRSs
are no longer of interest. First, higher-order matching, although decidable,
has non-elementary complexity [97, 111]. Moreover, since even second-order
unification is undecidable [32], as soon as unification is involved one really
needs a restriction, for example to compute critical pairs.

There is another problem concerning confluence with non-pattern systems.
For PRSs the restriction fv(ℓ) ⊇ fv(r) guarantees that rewriting does not
introduce new variables. This fails for general HRSs. For instance for an HRS
R consisting of the single rule f(F (x))→ f(x) we have f(y)→R f(x) using the
substitution {F 7→ λz. y}.

The map function, applying a function to all elements of a list, can be
modeled as a PRS.
Example 2.50 (Cop #430). The signature F consists of

0 : nat
s : nat→ nat

nil : natlist
cons : nat→ natlist→ natlist
map : (nat→ nat)→ natlist→ natlist

The two rewrite rules in R are:

map(λx. F (x), nil)→ nil
map(λx. F (x), cons(h, t))→ cons(F (h), map(λx. F (x), t))

28

2.5 Higher-Order Rewriting

Here the types of the variables are F : nat→ nat, h : nat, t : natlist and x : nat.
Also note that, since terms are in η-long β-normal form, F gets η-expanded
to λx. F (x). As an example computation in this PRS consider mapping the
identity function over the singleton list containing s(0):

map(λx. x, cons(s(0), nil))→ cons((λx. x) s(0), map(λx. x, nil)) ↕ηβ
= cons(s(0), map(λx. x, nil))
→ cons(s(0), nil ↕ηβ)
= cons(s(0), nil)

Note that in the first step the term does match the left-hand side of the second
rule because (λy. (λx. x) · y)→β (λy. y) ̸=α (λx. x) and so

map(λx. F (x), cons(h, t))σ ↕ηβ = map(λx. x, cons(s(0), nil))

with σ = {F 7→ λx. x, h 7→ s(0), t 7→ nil}.

29

Chapter 3

Closing Critical Pairs
I have had my results for a long time,

but I do not yet know how I am to arrive at them.
Carl F. Gauss

In this chapter we present the formalization of three classic confluence results
for first-order term rewrite systems. We have formalized proofs, showing that
(a) linear strongly closed systems, (b) left-linear parallel closed systems, and
(c) left-linear almost parallel closed systems are confluent. The former two
results are due to Huet [45] and presented in full detail in the textbook of
Baader and Nipkow [11, Lemma 6.3 and Section 6.4]. The third result is due
to Toyama [107].

In the second part of the chapter we are concerned with more a recent idea
due to Oyamaguchi and Hirokawa [82] that can be understood as a combination
of Huet’s results and Newman’s Lemma: one can weaken the joining conditions
for the critical pairs if additionally termination is required for the subsystem
of rules that are used to perform the joining steps.

Several of the criteria in this chapter are extended to commutation. To this
end we first revisit the critical pair lemma for commutation in Section 3.1. In
Section 3.2 we show that linear strongly closed rewrite systems are confluent.
Linearity is an important limitation, but the result does have its uses [31].
Section 3.3 is devoted to the formalization of the result of Huet that a left-linear
rewrite system is confluent if its critical pairs are parallel closed. In Section 3.4
we consider Toyama’s generalization of the previous result. Apart from a weaker
joinability requirement on overlays, the result is again extended to commutation.
Section 3.5 is devoted to critical pair closing systems. In Section 3.6 we explain
what is needed for the automatic certification of confluence proofs that employ
the formalized techniques. In the final section we conclude with an outlook
on future work, in particular the challenges that need to be overcome when

31

Chapter 3 Closing Critical Pairs

extending the results from parallel closed rewrite systems to development closed
higher-order rewrite systems [78].

The main IsaFoR theories relevant in this chapter are Strongly_Closed.thy,
for the result on strongly closed rewrite systems, Parallel_Closed.thy for
results on parallel closed systems (where we make heavy use of multihole con-
texts, cf. Multihole_Context.thy), Critical_Pair_Closing_Systems.thy
for critical-pair-closing systems, and Critical_Pair_Closure_Impl.thy for
the executable check functions.

3.1 Critical Pair Lemma
The famous critical pair lemma states that in order to check local confluence it
suffices to check joinability of all critical pairs.

Lemma 3.1 (Knuth and Bendix [54], Huet [45]). A TRS is locally confluent
if and only if all its critical pairs are joinable.

Together with Newman’s Lemma this yields decidability of confluence for
finite terminating TRSs: for every critical pair s ←⋊→ t compute terms s′

and t′ with s→! s′ and t→! t′, which is possible since the TRS is terminating.
If s′ = t′ for all critical pairs, then the TRS is locally confluent by the critical
pair lemma and thus also confluent by Newman’s Lemma. If one finds a critical
pair with s′ ̸= t′ then the TRS is not confluent, since s′ ∗← · →∗ t′ but s′ and
t′ are not joinable, because they are distinct normal forms. For commutation
the situation is different, however—without further restrictions the critical pair
lemma does not hold.

Example 3.2. Consider the two one rule TRSs R and S:

R : f(x, x)→ x S : a→ b

They do not admit any critical pairs, but do not satisfy local commutation, as
witnessed by the non-commuting peak

a R← f(a, a)→S f(b, a)

The problem is easy to see. Applying the second rule to one of the arguments
of f(a, a) destroyed the possibility to apply the first rule. This effect also happens
in the confluence setting, but there one can do additional steps to re-balance

32

http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/file/1ad7cb6207d7/thys/Confluence_and_Completion/Strongly_Closed.thy
http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/file/1ad7cb6207d7/thys/Confluence_and_Completion/Parallel_Closed.thy
http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/file/1ad7cb6207d7/thys/Rewriting/Multihole_Context.thy
http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/file/1ad7cb6207d7/thys/Confluence_and_Completion/Critical_Pair_Closing_Systems.thy
http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/file/1ad7cb6207d7/thys/Confluence_and_Completion/Critical_Pair_Closure_Impl.thy

3.2 Strongly Closed Critical Pairs

the term, which, when dealing with commutation, is not possible. To recover
the result we need to restrict attention to left-linear TRSs.1

Lemma 3.3. Left-linear TRSs R and S locally commute if their critical pairs
are joinable:

(R←⋊→S) ∪ (R←⋉→S) ⊆ →∗
S · ∗

R←

Proof. Consider a peak t R← s→S u. Then there are positions p1, p2 ∈ Pos(s),
substitutions σ1, σ2 and rules ℓ1 → r1 ∈ R and ℓ2 → r2 ∈ S with s|p1 = ℓ1σ1,
s|p2 = ℓ2σ2 and t = s[r1σ1]p1 , u = s[r2σ2]p2 . We show the existence of a term
v with t→∗

S v and u→∗
R v by analyzing the positions p1 and p2. If they are

parallel then t →S t[r2σ2]p2 = u[r1σ1]p1 R← u. If they are not parallel then
one is above the other.

Without loss of generality assume p1 ⩽ p2, then there is a position q with
p2 = p1q. If q ∈ PosF(ℓ1) then ℓ1|qσ1 = ℓ2σ2 and thus there is a critical pair
r1µ R←⋉→S ℓ1µ[r2µ]q, which is joinable by assumption, and by closure under
contexts and substitutions also t and u are joinable.

If q /∈ PosF(ℓ1) the step in S happens in the substitution. That is, there
is a variable x and positions q1, q2 with q = q1q2, q1 ∈ Pos(ℓ1), ℓ1|q1 = x.
Suppose |r1|x = n, then t→n

S v R← u for v = s[r1τ]p1 with τ(y) = σ1(y) for all
y ∈ V \ {x} and τ(x) = σ1(x)[r2σ2]q2 . Note that u = s[ℓ1τ]p1 due to linearity
of ℓ1, see also the proof of Lemma 3.6 below.

Analyzing a local peak in this way—the two redexes are either parallel,
give rise to a critical pair, or one is in the substitution of the other—is a
common theme. We will use it again in e.g. the proof of strong closedness and
in Section 4.2.1 where more details about the joining sequences are needed in
order to be used in the context of decreasing diagrams.

3.2 Strongly Closed Critical Pairs

The next criterion we consider is due to Huet [45] and based on the observation
that in a linear rewrite system it suffices to have strong-confluence like joins for
all critical pairs in order to guarantee strong confluence of the rewrite system.

1The problems with non-left-linearity run even deeper: commutation is not preserved under
signature extension for non-left-linear TRSs [39]—but for left-linear ones it is.

33

Chapter 3 Closing Critical Pairs

Definition 3.4. A TRS R is strongly closed if every critical pair s←⋊→ t of
R satisfies both s→= · ∗← t and s→∗ · =← t.

The following folklore lemma tells us that in a linear term applying a
substitution can be done by replacing the one subterm where the variable
occurs and applying the remainder of the substitution.

Lemma 3.5. Let t be a linear term and let p ∈ PosV(t) be a position with
t|p = x. Then for substitutions σ and τ with σ(y) = τ(y) for all y ∈ Var(t)
different from x we have tτ = tσ[τ(x)]p.

The proof that linear strongly closed systems are strongly confluent is very
similar to the one of the critical pair lemma, by analyzing the relative positions
of the rewrite steps in a peak. The next lemma, which appears implicitly in
Huet’s proof of Corollary 3.7, takes care of the case where one position is above
the other.

Lemma 3.6. Let R be a linear, strongly closed TRS and assume s →R t
with rule ℓ1 → r1 and substitution σ1 at position p1 and let s→R u with rule
ℓ2 → r2 and substitution σ2 at position p2 with p1 ⩽ p2. Then there are terms
v and w with t→∗

R v =
R← u and t→=

R w ∗
R← u.

Proof. By assumption we have s|p1 = ℓ1σ1, s|p2 = ℓ2σ2, t = s[r1σ1]p1 , and u =
s[r2σ2]p2 . Since p1 ⩽ p2 there is a position q with p2 = p1q and (ℓ1σ1)|q = ℓ2σ2.
So we can write u as u = s[(ℓ1σ1)[r2σ2]q]p1 .

We now distinguish whether the step from s to u overlaps with the one from
s to t or takes place in the substitution. i.e., we perform a case analysis on
q ∈ PosF (ℓ1). If that is the case then ℓ1|qσ1 = ℓ2σ2 and thus there is a critical
pair ℓ1µ[r2µ]q ←⋊→ r1µ. But then by assumption we obtain terms v and w
with r1µ →∗

R v =
R← ℓ1µ[r2µ]q and r1µ →=

R w ∗
R← ℓ1µ[r2µ]q. Closure under

contexts and substitutions yields the desired result.
If q /∈ PosF(ℓ1) we obtain positions q1, q2 and a variable x with q = q1q2,

q1 ∈ Pos(ℓ1), ℓ1|q1 = x, and (xσ1)|q2 = ℓ2σ2. Define the substitution τ as

τ(y) =
{

(xσ1)[r2σ2]q2 if y = x

yσ1 otherwise

Since ℓ1 is linear by assumption we have ℓ1τ = (ℓ1σ1)[(xσ1)[r2σ2]q2]q1 using
Lemma 3.5 and hence also ℓ1τ = (ℓ1σ1)[r2σ2]q. But then u = s[ℓ1τ]p1 and

34

3.2 Strongly Closed Critical Pairs

thus u →R s[r1τ]p1 . We conclude by showing t →=
R s[r1τ]p1 . If x /∈ Var(r1)

then r1τ = r1σ1 and thus t = s[r1τ]p1 . Otherwise we obtain a position
q′ ∈ Pos(r1) with r1|q′ = x. Then, again using linearity and Lemma 3.5 we
have r1τ = (r1σ1)[(xσ1)[r2σ2]q2]q′ and hence r1τ = (r1σ1)[r2σ2]q′q2. Since also
r1σ1 = (r1σ1)[l2σ2]q′q2 we have r1σ1 →R r1τ and by closure under context also
t→R s[r1τ]p1 .

Now the main result of this section follows easily.

Corollary 3.7 (Huet [45]). If a TRS R is linear and strongly closed then →R
is strongly confluent.

Proof. Assume s→R t and s→R u. Then there are positions p1, p2 ∈ Pos(s),
substitutions σ1, σ2 and rules ℓ1 → r1, ℓ2 → r2 in R with s|p1 = ℓ1σ1,
s|p2 = ℓ2σ2 and t = s[r1σ1]p1 , u = s[r2σ2]p2 . We show existence of a term v
with t →∗ v and u →= v by analyzing the positions p1 and p2. If they are
parallel then t→ t[r2σ2]p2 = u[r1σ1]p1 ← u. If they are not parallel then one
is above the other and we conclude by Lemma 3.6.

Then by Lemma 2.11 R is also confluent.

Example 3.8 (Cop #103). Consider the TRS R consisting of the two rewrite
rules

f(f(x, y), z)→ f(x, f(y, z)) f(x, y)→ f(y, x)

Note that rules of this shape are of special interest—they state that f is
associative and commutative (AC). There are four non-trivial critical pairs:

f(f(x, f(y, z)), v)←⋊→ f(f(x, y), f(z, v)) f(x, f(y, z))←⋊→ f(z, f(x, y))
f(z, f(x, y))←⋊→ f(x, f(y, z)) f(f(y, x), z)←⋊→ f(x, f(y, z))

Because of the rewrite sequences

f(f(x, f(y, z)), v)→ f(x, f(f(y, z)), v)→ f(x, f(y, f(z, v)))
f(f(x, y), f(z, v))→ f(x, f(y, f(z, v)))
f(f(x, y), f(z, v))→ f(f(z, v), f(x, y))→ f(f(v, z), f(x, y))→ f(v, f(z, f(x, y)))

→ f(f(z, f(x, y)), v)→ f(f(f(x, y), z), v)→ f(f(x, f(y, z)), v)
f(z, f(x, y))→ f(f(x, y), z)→ f(x, f(y, z))

35

Chapter 3 Closing Critical Pairs

f(x, f(y, z))→ f(f(y, z), x)→ f(y, f(x, z))
→ f(f(x, z), y)→ f(f(z, x), y)→ f(z, f(x, y))

f(f(y, x), z)→ f(f(x, y), z)→ f(x, f(y, z))
f(x, f(y, z))→ f(f(y, z), x)→ f(f(z, y), x)→ f(z, f(y, x))→ f(f(y, x), z)

R is strongly closed. Since it is also linear, we obtain confluence.

The next example shows how to apply the criterion to a TRS that does not
fulfill the variable conditions.

Example 3.9 (Cop #394). Consider the linear TRS R consisting of the
following three rules:

a→ f(x) f(x)→ b x→ f(g(x))

There are four critical pairs modulo symmetry:

f(y)←⋊→ f(x) f(g(a))←⋊→ f(x) b←⋊→ b f(g(f(x)))←⋊→ b

Using the second rule it is easy to see that all of them are strongly closed.
Hence R is confluent.

In the next section we consider a criterion that drops the condition on R to
be right-linear.

3.3 Parallel Closed Critical Pairs
The criterion from the previous section requires the TRS to be linear and while
left-linearity is a common restriction, right-linearity is a rather unnatural one.
Thus we turn our attention to criteria for left-linear systems that change the
restriction on the joinability of critical pairs. The crucial observation is that
in a non-right-linear system executing the upper step in a variable overlap
can duplicate the redex below. Thus to join such a situation multiple steps
might be necessary, all of which take place at parallel positions. Consequently
we consider parallel rewriting. The following definition describes the new
joinability condition.

Definition 3.10. A TRS R is parallel closed if every critical pair s←⋊→ t
of R satisfies s −→∥ R t.

36

3.3 Parallel Closed Critical Pairs

Together with left-linearity this guarantees the diamond property of the
parallel rewrite relation.

Theorem 3.11 (Huet [45]). If a TRS R is left-linear and parallel closed then
−→∥ R has the diamond property.

The proof of this theorem is much more involved than the one for strongly
closed systems. The first observation is that we will now have to consider a
peak of parallel steps, in order to show the diamond property of −→∥ . In case
the two parallel steps are orthogonal to each other, they simply commute
by the well-known Parallel Moves Lemma. However, if they do interfere the
assumption of the theorem only allows us to close a single critical pair to reduce
the amount of interference. Thus we will have to use some form of induction
on how much the patterns of the two parallel steps overlap. Figure 4 shows the
setting for the overlapping case. The horizontal parallel step, described by the
horizontally striped redexes, and the vertical step, described by the vertically
striped redexes, overlap. Hence there is a critical pair, say the one obtained
from overlapping the leftmost vertical redex with the leftmost horizontal redex.
Then, by assumption there is a closing parallel step, which, since it takes
place inside the critical pair, can be combined with the remaining horizontal
redexes to obtain a new peak with less overlap, which can be closed by the
induction hypothesis. When making this formal we identified two crucial
choices. First the representation of the parallel rewrite relation and second
the way to measure the amount of overlap between two parallel steps with
the same source. Huet in his original proof heavily uses positions. That is, a
parallel step is defined as multiple single steps that happen at parallel positions
and for measuring overlap he takes the sum of the sizes of the subterms that
are affected by both steps. More precisely, writing −→∥ P for a parallel step that
takes place at positions in a set P , for a peak t P1←−∥ s −→∥ P2 u he uses∑

q∈Q

|s|q|

where Q = {p1 ∈ P1 | p2 ⩽ p1 for some p2 ∈ P2} ∪ {p2 ∈ P2 | p1 ⩽ p2 for some
p1 ∈ P1}. This formulation is also adopted in the textbook by Baader and
Nipkow [11]. Consequently, when starting the present formalization, we also
adopted this definition. However, the book keeping required by working with
sets of positions as well as formally reasoning about this measure in Isabelle

37

Chapter 3 Closing Critical Pairs

induction hypothesis

∥

∥

∥ ∥

∥

∥

Figure 4: Overview of the proof of Theorem 3.11.

became so convoluted that it very much obscured the ingenuity and elegance of
Huet’s original idea while at the same time defeating our formalization efforts.
Hence in the end we had to adopt a different approach.

Toyama [107], in the proof of his extension of Huet’s result, does not use
positions at all and instead relies on (multihole) contexts, which means a
parallel step is then described by a context and a list of root steps that happen
in the holes. To measure overlap he collects those redexes that are subterms
of some redex in the other step, i.e., decorating the parallel rewrite relation
with the redexes contracted in the step, for a peak t t1,...,tn←−∥ s −→∥ u1,...,um u
Toyama’s measure is ∑

r∈S

|r|

where S = {ui | ui ⊴ tj for some tj} ∪ {tj | tj ⊴ ui for some ui}. However, this
measure turns out to be problematic as shown in the following example.

Example 3.12 (Cop #503). Consider the TRS consisting of the following five
rewrite rules:

f(a, a, b, b)→ f(c, c, c, c) a→ b a→ c b→ a b→ c

38

3.3 Parallel Closed Critical Pairs

Then we have the peak f(b, b, a, a) a,a,b,b←−−−−∥ f(a, a, b, b) f(a,a,b,b)−−−−−→∥ f(c, c, c, c). The
measure of this peak according to the definition above is 2, since S = {a, b}∪∅.
Now after splitting off one of the four critical steps—it does not matter which
one—and closing the corresponding critical pair, we arrive at

f(a, a, b, b) f(c, c, c, c)

f(b, a, b, b)

f(b, b, a, a)

∥

∥

The measure of the new peak f(b, b, a, a) a,b,b←−−−∥ f(b, a, b, b) b,a,b,b−−−−→∥ f(c, c, c, c) is
still 2 since S = {a, b} ∪ {a, b}.

Note that using multisets instead of sets does not help, since then the measure
of the initial peak is 4 (S = {a, a, b, b}) and of the new peak, after closing
the critical pair, it is 7 since S = {a, b, b} ⊎ {b, a, b, b} (and even if we take
into account that three of the redexes are counted twice we still get 4). The
problem is that in the new peak the redex at position 1 of the closing step
is counted again, because b is a subterm of one the redexes of the other step.
Hence it is crucial to only count redexes at overlapping positions.

To remedy this situation we will collect all overlapping redexes of a peak
in a multiset. These multisets will then be compared by ▷mul, the multiset
extension of the proper superterm relation. We start by characterizing parallel
rewrite steps using multihole contexts.

Definition 3.13. We write

s
C,a1,...,an−−−−−−→∥ R t

if s = C[a1, . . . , an] and t = C[b1, . . . , bn] for some b1, . . . , bn with ai →ϵ
R bi for

all 1 ⩽ i ⩽ n.

To save space we sometimes abbreviate the list of terms a1, . . . , an by a and
denote the step by

s
C,a−−→∥ R t

leaving the length of the list of redexes implicit. The following expected
correspondence is easily shown by induction.

39

Chapter 3 Closing Critical Pairs

Lemma 3.14. We have s −→∥ R t if and only if s
C,s−−→∥ R t for some C and s.

Now we can formally measure the overlap between two parallel rewrite steps
by collecting those redexes that are below some redex in the other step.
Definition 3.15. The overlap between two co-initial parallel rewrite steps is
defined by the following equations

▲
(

□,a←−−∥ s
□,b−−→∥

)
= {s}

▲
(

C,a1,...,ac←−−−−−−∥ s
□,b−−→∥

)
= {a1, . . . , ac}

▲
(

□,a←−−∥ s
D,b1,...,bd−−−−−−→∥

)
= {b1, . . . , bd}

▲
(

f(C1,...,Cn),a←−−−−−−−−∥ f(s1, . . . , sn) f(D1,...,Dn),b−−−−−−−−→∥

)
=

n⋃
i=1

▲
(

Ci,ai←−−−∥ si
Di,bi−−−→∥

)
where a1, . . . , an = a and b1, . . . , bn = b are partitions of a and b such that the
length of ai and bi matches the number of holes in Ci and Di, for all 1 ⩽ i ⩽ n.

Given functionality to do the partitioning, this definition is straightforward to
write down in Isabelle, the formal text is shown in Listing 5. Here mset converts
a list to a multiset and # is used in Isabelle/HOL for denoting (operations on)
multisets, e.g. {#} denotes the empty multiset. We also use slightly different
pattern matching compared to Definition 3.15: the case where both contexts
are the hole is covered by the first equation of Listing 5, while the cases for
variables where added to make the function total.
Example 3.16. Applying this definition for the two peaks from Example 3.12
yields

▲
(

f(□,□,□,□),a,a,b,b←−−−−−−−−−−−∥ f(a, a, b, b) □,f(a,a,b,b)−−−−−−−→∥

)
= {a, a, b, b}

▲
(

f(b,□,□,□),a,b,b←−−−−−−−−−−∥ f(b, a, b, b) f(□,□,□,□),b,a,b,b−−−−−−−−−−−→∥

)
= {a, b, b}

and {a, a, b, b} ▷mul {a, b, b} as desired.
Note that our definition of ▲ is in fact an over-approximation of the actual

overlap between the steps. That is because we do not split redexes into the
left-hand side of the applied rule and a substitution but take the redex as a
whole. The following example illustrates the effect.

40

3.3 Parallel Closed Critical Pairs

▲(MHole, [l]) (C , ls) = mset ls
▲(C , ls) (MHole, [l]) = mset ls
▲(MFun f Cs, ls) (MFun g Ds, ls ′) =⋃ #{# ▲(Cs ! i, partition_holes ls Cs ! i)

(Ds ! i, partition_holes ls ′ Ds ! i)
. i ∈# mset [0 ..<length Cs]#}

▲(MVar x, []) (C , ls) = {#}
▲(C , ls) (MVar x, []) = {#}

Listing 5: Definition of overlap between two parallel steps.

Example 3.17. Consider the rewrite system consisting of the two rules

f(x)→ x a→ b

and the peak a← f(a)→ f(b). We have

▲
(

□,f(a)←−−−∥ f(a) f(□),a−−−→∥
)

= {a}

although the two steps do not overlap—the step to the right takes place
completely in the substitution of the one to the left (in fact the rewrite system
in question is orthogonal).

However, since we are dealing with parallel rewriting, no problems arise
from this over-approximation. This changes when extending the results to
development steps, see Section 3.7 for further discussion.

The following properties of ▲ turned out to be crucial in our proof of
Theorem 3.11.

Lemma 3.18. For a peak C,a←−−∥ s
D,b−−→∥ the following properties of ▲ hold.

• If s = f(s1, . . . , sn) with C = f(C1, . . . , Cn) and D = f(D1, . . . , Dn) then

▲
(

Ci,ai←−−−∥ si
Di,bi−−−→∥

)
⊆▲

(
C,a←−−∥ s

D,b−−→∥
)

for all 1 ⩽ i ⩽ n.

• The overlap is bounded by a, i.e., we have

{a} ▷=
mul ▲

(
C,a←−−∥ s

D,b−−→∥
)

41

Chapter 3 Closing Critical Pairs

• The overlap is symmetric, i.e., ▲
(

C,a←−−∥ s
D,b−−→∥

)
= ▲

(
D,b←−−∥ s

C,a−−→∥
)

.

There is one more high-level difference between the formalization and the
paper proof. In the original proof one needs to combine the closing step for the
critical pair with the remainder of the original step in order to obtain a new
peak, to which the induction hypothesis can then be applied. This reasoning
can be avoided, by using an additional induction on the source of the peak.
Then the case where neither of the two parallel steps is a root step (and thus a
single step) can be discharged by the induction hypothesis of that induction.

The following technical lemma tells us that a parallel rewrite step starting
from sσ is either inside s, i.e., we can split off a critical pair, or we can do the
step completely inside σ.

Lemma 3.19. Let s be a linear term. If sσ
C,s1,...,sn−−−−−−→∥ R t then either t = sτ for

some substitution τ such that xσ −→∥ xτ for all x ∈ Var(s) or there exist a context
D, a non-variable term s′, a rule ℓ→ r ∈ R, a substitution τ , and a multihole
context C ′ such that s = D[s′], s′σ = ℓτ , Dσ[rτ] = C ′[s1, . . . , si−1, si+1, . . . , sn]
and t = C ′[t1, . . . , ti−1, ti+1, . . . , tn] for some 1 ⩽ i ⩽ n.

Proof. By induction on s. If s = x for a variable x set τ = {x 7→ t}. Otherwise
s = f(s′

1, . . . , s′
n), proceed by case analysis on C. If C = □ then s = ℓτ and

t = rτ for some ℓ→ r ∈ R. Set s′ = s and D = □. Otherwise we obtain the
desired result for all s′

1, . . . , s′
n by the induction hypothesis. If one of the steps

in the arguments contains a critical pair so does the whole step. Otherwise,
since s is linear, the parallel steps in the arguments can be combined to a step
on the whole term.

We are now ready to prove the main result of this section. To ease presen-
tation, the following proof does use the condition that the left-hand sides of
rewrite rules are not variables. By employing additional technical case analyses
this restriction can be easily dropped. We refer to the formalization for details.

Proof of Theorem 3.11. Assume t
C,a←−−∥ s

D,b−−→∥ u. We show t −→∥ v ←−∥ u for some
term v by well-founded induction on the overlap between the two parallel steps
using the order ▷mul and continue by induction on s with respect to ▷. If s = x
for some variable x then t = u = x. So let s = f(s1, . . . , sn). We distinguish
four cases.

42

3.3 Parallel Closed Critical Pairs

(a) If C = f(C1, . . . , Cn) and D = f(D1, . . . , Dn) then t = f(t1, . . . , tn)
and u = f(u1, . . . , un) and we obtain partitions a1, . . . , an = a and
b1, . . . , bn = b of a and b with

ti
Ci,ai←−−−∥ si

Di,bi−−−→∥ ui

for all 1 ⩽ i ⩽ n. Then, since we have

▲
(

Ci,ai←−−−∥ si
Di,bi−−−→∥

)
⊆▲

(
C,a←−−∥ s

D,b−−→∥
)

by Lemma 3.18 and thus also

▲
(

C,a←−−∥ s
D,b−−→∥

)
▷=

mul ▲
(

Ci,ai←−−−∥ si
Di,bi−−−→∥

)
we can apply the inner induction hypothesis and obtain terms vi with
ti −→∥ vi ←−∥ ui for all 1 ⩽ i ⩽ n and thus we have t −→∥ f(v1, . . . , vn)←−∥ u.

(b) If C = D = □ then both steps are root steps and thus single rewrite steps
and we can write t = r1σ1

ϵ←− ℓ1σ1 = s = ℓ2σ2
ϵ−→ r2σ2 = u. Hence, since

ℓ1σ1 = ℓ2σ2, there is a critical pair r′
1µ ←⋉⋊→ r′

2µ for variable disjoint
variants ℓ′

1 → r′
1, ℓ′

2 → r′
2 of ℓ1 → r1, ℓ2 → r2 with µ a most general

unifier of ℓ′
1 and ℓ′

2. Then by assumption r′
1µ −→∥ r′

2µ and by closure under
substitutions also t = r1σ1 −→∥ r2σ2 = u.

(c) If C = f(C1, . . . , Cn) and D = □ then the step to the right is a single
root step and we write

t = f(t1, . . . , tn) C,a←−−∥ s = ℓσ
ϵ−→ rσ = u

Since ℓ is linear by assumption, we can apply Lemma 3.19 and either
obtain τ with t = ℓτ and xσ −→∥ xτ for all x ∈ Var(ℓ) or a critical pair.

• In the first case define

δ(x) =
{

τ(x) if x ∈ Var(ℓ)
σ(x) otherwise

We have t = ℓτ = ℓδ by definition of δ and hence t −→∥ rδ by a single
root step. Moreover we have u = rσ −→∥ rδ since xσ −→∥ xδ for all
variables x ∈ Var(r). This holds because either x ∈ Var(ℓ) and then
xσ −→∥ xτ = xδ or x /∈ Var(ℓ) and then xσ = xδ.

43

Chapter 3 Closing Critical Pairs

• In the second case Lemma 3.19 yields a context E, a non-variable
term ℓ′′, a rule ℓ′ → r′ ∈ R, a substitution τ , and a multihole
context C ′ such that Eσ[r′τ] = C ′[a1, . . . , ai−1, ai+1, . . . , ac], t =
C ′[a′

1, . . . , a′
i−1, a′

i+1, . . . , a′
c], ℓ = E[ℓ′′], and ℓ′′σ = ℓ′τ for some

1 ⩽ i ⩽ c. Since ℓ′′σ = ℓ′τ there is a critical pair Eµ[r′µ]←⋊→ rµ
and by assumption Eµ[r′µ] −→∥ rµ and thus also Eσ[r′τ] −→∥ rσ. That
is, we obtain a new peak

t
C′,a′
←−−−∥ Eσ[r′τ] −→∥ rσ

with a′ = a1, . . . , ai−1, ai+1, . . . , ac. Since

▲
(

C,a←−−∥ s
□,ℓσ−−−→∥

)
= {a1, . . . , ac} ▷mul {a1, . . . , ai−1, ai+1, . . . , ac}

▷=
mul ▲

(
C′,a′
←−−−∥ Eσ[r′τ] −→∥

)
by Lemma 3.18, we can apply the induction hypothesis and obtain
v with t −→∥ v ←−∥ rσ = u.

(d) The final case, where D = f(D1, . . . , Dn) and C = □, is completely
symmetric.

Finally, by Lemma 2.11 and Lemma 2.33 we obtain confluence of →R.

Example 3.20 (Cop #504). Consider the TRS R consisting of the following
three rewrite rules:

x + y → y + x

(x + y) ∗ z → (x ∗ z) + (y ∗ z)
(y + x) ∗ z → (x ∗ z) + (y ∗ z)

Since the four critical pairs of R

(y + x) ∗ z ←⋊→ (x ∗ z) + (y ∗ z) (y ∗ z) + (x ∗ z)←⋊→ (x ∗ z) + (y ∗ z)
(x + y) ∗ z ←⋊→ (x ∗ z) + (y ∗ z) (x ∗ z) + (y ∗ z)←⋊→ (y ∗ z) + (x ∗ z)

are parallel closed, R is confluent.

44

3.4 Almost Parallel Closed Critical Pairs

3.4 Almost Parallel Closed Critical Pairs
In this section we consider two extensions to Huet’s result due to Toyama [107].
The first one allows us to weaken the joining condition for some critical pairs.

When carefully examining the proof of Theorem 3.11 one realizes that in
the case where both steps of the peak are single root steps, i.e., the case where
C = D = □, the induction hypothesis does not need to be applied, since
closing the critical pair immediately closes the whole peak. This suggests that
the joining condition can be weakened for overlays. A first idea could be to
take ←⋉⋊→ ⊆ −→∥ · ←−∥ since then we would still have the diamond property in
the overlay case. However, Toyama realized that one can do even better by
weakening the diamond property to strong confluence. The following definition
captures the new conditions.

Definition 3.21. A TRS R is almost parallel closed if s −→∥ · ∗← t for all
overlays s←⋉⋊→ t and s −→∥ t for all inner critical pairs s←·⋊→ t.

Using exactly the same proof structure as before we could now prove strong
confluence of −→∥ for left-linear almost parallel closed systems. However, consid-
ering Toyama’s second extension of Theorem 3.11, we will prove the theorem
in the more general setting of commutation.

Theorem 3.22 (Toyama [107]). Let R1 and R2 be left-linear TRSs. If we
have s −→∥ 2 · ∗

1← t for all critical pairs s 1←⋊→2 t and additionally s −→∥ 1 t for
all inner critical pairs s 2←·⋊→1 t then −→∥ 1 and −→∥ 2 strongly commute.

Proof Adaptations. We only highlight the differences to the proof of Theo-
rem 3.11 and refer to the formalization for the full proof details. Assume

t 1
C,a←−−∥ s

D,b−−→∥ 2 u

We show t −→∥ 2 v ∗
1← u for some term v. We apply the same inductions and

case analyses as before. The cases C = f(C1, . . . , Cn), D = f(D1, . . . , Dn) and
C = D = □ require no noteworthy adaptation. The main difference is that
now the cases D = f(D1, . . . , Dn), C = □ and C = f(C1, . . . , Cn), D = □
become asymmetric for the critical pair case—the corresponding diagrams are
shown in Figure 5. First, suppose C = f(C1, . . . , Cn) and D = □, write

t = f(t1, . . . , tn) 1
C,a←−−∥ s = ℓσ

ϵ−→2 rσ = u

45

Chapter 3 Closing Critical Pairs

s

Eσ[r′τ]

t

u

v

v′

2
1 1 ∗

∥
2

∥

1 1 ∗

∥
2

s

t

· u

v

2

1

∥
2

∥

1
1 ∗

∥
2

Figure 5: Asymmetry in the proof of Theorem 3.22.

and assume there is a critical pair according to Lemma 3.19. That is, we obtain
Eµ[r′µ] 1←⋊→2 rµ with Eσ[r′τ] −→∥ 1 t and by assumption we obtain a v such
that Eσ[r′τ] −→∥ 2 v ∗

1← rσ. Then using the same reasoning as before, for the
new peak

t 1
C′,a′
←−−−∥ Eσ[r′τ] −→∥ 2 v

we have
▲

(
C,a←−−∥ s

□,ℓσ−−−→∥
)
▷mul ▲

(
C′,a′
←−−−∥ Eσ[r′τ] −→∥

)
and can apply the induction hypothesis to obtain a v′ with t −→∥ 2 v′ ∗

1← v,
which combined with u = rσ →∗

1 v concludes this case.
In the second case, i.e., when D = f(D1, . . . , Dn) and C = □, observe that

the critical pair we obtain is an inner critical pair between R2 and R1, since
D ̸= □. Thus, after applying the assumption for critical pairs 2←·⋊→1, the
proof is the same as for Theorem 3.11.

Instantiating R1 and R2 with the same TRS R yields the corresponding
result for confluence.

Corollary 3.23 (Toyama [107]). If the TRS R is left-linear and almost parallel
closed then −→∥ R is strongly confluent.

Proof. Immediate from the definition of almost parallel closed, Theorem 3.22
and the fact that s←⋊→ t if and only if s←⋉⋊→ t or s←·⋊→ t.

Example 3.24. Recall the rewrite system from Example 3.12. One easily
verifies that all its critical pairs are almost parallel closed, and hence it is
confluent.

46

3.5 Critical Pair Closing Systems

3.5 Critical Pair Closing Systems
The key idea in this section, originally due to Oyamaguchi and Hirokawa [82],
is to consider the subsystem of rewrite rules employed in the joining sequences
of critical pairs. Existence of such a subsystem is a necessary condition for
commutation of left-linear TRSs. It can be strengthened to sufficient conditions
by imposing restrictions like linearity or termination. The resulting criteria
generalize parallel closedness and strong closedness.

Definition 3.25. Let R and S be TRSs. A subsystem C of R∪ S is critical-
pair-closing if

(R←⋊→S) ∪ (R←⋉→S) ⊆ →∗
S ∩ C · ∗

R ∩ C←

Existence of a critical-pair-closing system generalizes the critical pair lemma.

Theorem 3.26. Left-linear TRSs that admit a critical-pair-closing system
locally commute.

Proof. Immediate from Lemma 3.3 and the definition of critical-pair-closing
system.

Additionally requiring right-linearity allows for a result based on strong
commutation.

Theorem 3.27. Linear TRSs R and S commute if the inclusion

(R ∩ C←⋊→S ∩ C) ∪ (R ∩ C←⋉→S ∩ C) ⊆ →=
S ∩ C · ∗

R ∩ C←

holds for a critical-pair-closing system C for R and S.

Proof. The proof works by analyzing peaks between R, S, R∩ C, and S ∩ C,
eventually showing that →= · →∗ has the diamond property. We have

(a) ∗
R ∩ C← · →∗

S ∩ C ⊆ →∗
S ∩ C · ∗

R ∩ C←

(b) R← · →S ⊆ →=
S · →∗

S ∩ C · ∗
R ∩ C← · =

R←

(c) R ∩ C← · →S ⊆ →=
S · →∗

S ∩ C · ∗
R ∩ C←

(d) S ∩ C← · →R ⊆ →=
R · →∗

R ∩ C · ∗
S ∩ C←

47

Chapter 3 Closing Critical Pairs

(e) ∗
R ∩ C← · →S ⊆ →=

S · →∗
S ∩ C · ∗

R ∩ C←

(f) ∗
S ∩ C← · →R ⊆ →=

R · →∗
R ∩ C · ∗

S ∩ C←

(g) ∗
R ∩ C← · =

R← · →=
S · →∗

S ∩ C ⊆ →=
S · →∗

S ∩ C · ∗
R ∩ C← · =

R←

For item (a) we show that R∩C and S∩C strongly commute. This follows from
the usual peak analysis, using right-linearity to avoid duplication of redexes in
case one step takes place in the substitution of the other, like in the proof of
Lemma 3.6, and the assumption on critical pairs between R∩ C and S ∩ C in
case of a critical overlap.

For item (b) the same peak analysis yields R← · →S ⊆ →=
S · =

R← in case
the steps happen at parallel positions or one is in the substitution of the other
and, since C is critical-pair-closing, R← · →S ⊆ →∗

S ∩ C · ∗
R ∩ C← in case of a

critical overlap. Items (c) and (d) are straightforward variations of item (b),
where the joining steps from the right can be merged into one sequence, since
the step to the left is restricted to C.

Items (e) and (f) follow from items (c) and (d) respectively, using an induction
on the length of the rewrite sequence to the left and item (a), as shown in
Figure 6(a). Note that if the closing→=

S -step, obtained from item (c), is empty
applying the induction hypothesis is omitted.

Item (g) can then be shown from items (b), (e), (f), and (a) by closing the
peak as depicted in Figure 6(b). Again, if any of the →=-steps are empty the
respective parts of the diagram disappear.

Finally we conclude commutation using Lemma 2.17 and the two inclusions
→R ⊆ →=

R · →∗
R ∩ C ⊆ →∗

R and →S ⊆ →=
S · →∗

S ∩ C ⊆ →∗
S .

The corresponding corollary for confluence generalizes Huet’s result on
strongly closed TRSs.

Corollary 3.28. A linear TRS R is confluent if it admits a strongly closed
critical-pair-closing system C.

Example 3.29 (Cop #760). Consider the linear R TRS consisting of the
following three rules:

f(x)→ f(f(x)) g(x)→ f(x) f(x)→ g(x)

There are two critical pairs

f(f(x))←⋊→ g(x) g(x)←⋊→ f(f(x))

48

3.5 Critical Pair Closing Systems

·

·

·

·
S

· ·

· ··

R
∩

C
R

∩
C

∗

S
=

S
=

R
∩

C
∗

S ∩ C
∗

R
∩

C
∗

R
∩

C
∗

S ∩ C
∗

S ∩ C
∗

(c)

IH (a)

(a) Proof of Theorem 3.27(e).

· ·

·

·

· · ·

·

·

·

··

·

·

R =
R

∩
C

∗

S
=

S ∩ C
∗

S
=

S ∩ C
∗

R =
R

∩
C

∗

S
=

S ∩ C
∗

R
∩

C
∗

S ∩ C
∗

R
∩

C
∗

R =
R

∩
C

∗

S ∩ C
∗

R
∩

C
∗

S ∩ C
∗

(b)

(e) (a)

(f)

(a)

(b) Proof of Theorem 3.27(g).

Figure 6: Proof of Theorem 3.27.

Since g(x)→ f(x)→ f(f(x)) by the first two rules, they constitute a critical-
pair-closing system. Moreover they do not admit critical pairs and hence R
is confluent by Corollary 3.28. Note that R is not strongly closed, because
that would require a join g(x) →= · ∗← f(f(x)). To see that a join of this
shape does not exist, first observe that the only terms reachable from g(x) by
→= are of size 2, namely f(x) and g(x) itself. However |s| > 2 for all s with
f(f(x)→∗ s, since |ℓ| ⩽ |r| for all rules ℓ→ r in R.

Next we turn to a variation of parallel closedness that requires C to be
terminating.

Theorem 3.30. Left-linear TRSs R and S commute if the inclusions

R←·⋊→S ⊆ −→∥ S ∩ C · ∗
R ∩ C← and R←⋉·→S ⊆ →∗

S ∩ C · R ∩ C←−∥

hold for some terminating critical-pair-closing system C for R and S.

Note that, since C is required to be a critical-pair-closing system, the theo-
rem demands R←⋉⋊→S ⊆ →∗

S ∩ C · ∗
R ∩ C← for overlays. Before proving it we

illustrate its power on an example.

49

Chapter 3 Closing Critical Pairs

Example 3.31 (Cop #62). Consider the left-linear TRS R from [83]:

1 : x− 0→ x 2: 0− x→ 0
3: s(x)− s(y)→ x− y 4: x < 0→ false
5: 0 < s(y)→ true 6: s(x) < s(y)→ x < y

7: if(true, x, y)→ x 8: if(false, x, y)→ y

9: gcd(x, 0)→ x 10: gcd(0, x)→ x

11: gcd(x, y)→ gcd(y, mod(x, y)) 12: mod(x, 0)→ x

13: mod(0, y)→ 0
14: mod(s(x), s(y))→ if(x < y, s(x), mod(x− y, s(y)))

Let C = {9, 10, 12, 13}. The system C is critical-pair-closing for R and obvi-
ously terminating. Since R admits no inner critical pairs it is confluent by
Theorem 3.30.

To prove Theorem 3.30 we show the diamond property of →∗ · −→∥ .

Lemma 3.32. Let R and S be left-linear TRSs satisfying the assumptions of
Theorem 3.30. Then we have

(a) ∗
R ∩ C← · →∗

S ∩ C ⊆ →∗
S ∩ C · ∗

R ∩ C←

(b) R←−∥ · −→∥ S ⊆ →∗
S ∩ C · −→∥ S · R←−∥ · ∗

R ∩ C←

(c) R ∩ C←−∥ · −→∥ S ⊆ →∗
S ∩ C · −→∥ S · ∗

R ∩ C←

(d) S ∩ C←−∥ · −→∥ R ⊆ →∗
R ∩ C · −→∥ R · ∗

S ∩ C←

(e) ∗
R ∩ C← · −→∥ S ⊆ →∗

S ∩ C · −→∥ S · ∗
R ∩ C←

(f) ∗
S ∩ C← · −→∥ R ⊆ →∗

R ∩ C · −→∥ R · ∗
S ∩ C←

(g) R←−∥ · ∗
R ∩ C← · →∗

S ∩ C · −→∥ S ⊆ →∗
S ∩ C · −→∥ S · R←−∥ · ∗

R ∩ C←

Proof Sketch. We only give the outline of the proof structure and refer to
the formalization for full details. Item (a) follows from local commutation of
R∩ C and S ∩ C, termination of C, and a commutation version of Newman’s
Lemma. Items (b), (c), and (d) are proved by an induction on the amount of
overlap between the steps in the peak, similar to the proof of Theorem 3.22.

50

3.6 Certificates

·

·

·

·∥
S

· ·

· ··

R
∩

C
R

∩
C

∗

S ∩ C
∗

S ∩ C
∗

R
∩

C
∗

∥
S

R
∩

C
∗

R
∩

C
∗

S ∩ C
∗

∥
S

(c)

(a) IH

(a) Proof of Lemma 3.32(e).

· ·

·

·

· · ·

··
R

∩
C

∗

S ∩ C
∗

(a)

S ∩ C
∗

R
∩

C
∗

∥
S

∥R ·

S ∩ C
∗

R
∩

C
∗

∥R

(f)

·

R
∩

C
∗

S ∩ C
∗

∥
S

(e)

·

·

S ∩ C
∗

R
∩

C
∗

∥
S

∥R

IH

(b) Proof of Lemma 3.32(g).

Figure 7: Proof of Lemma 3.32.

Items (e) and (f) follow from items (c) and (d) using well-founded induction
on the source of the peak with respect to →+

C , see Figure 7(a). The proof for
item (g) also proceeds by well-founded induction on the source of the peak
with respect to →+

C applying item (b) if both C-sequences are empty and
items (a), (e), and (f) if they are not, as depicted in Figure 7(b).

Now the main theorem follows easily.

Proof of Theorem 3.30. From Lemma 3.32(g) and the two obvious inclusions
→R ⊆ →∗

R ∩ C · −→∥ R ⊆ →∗
R and →S ⊆ →∗

S ∩ C · −→∥ S ⊆ →∗
S we obtain the

commutation of R and S from Lemma 2.17.

3.6 Certificates
To facilitate checking of confluence proofs generated by automatic tools based
on Corollary 3.7, Corollary 3.23, and Theorem 3.30, we extended the CPF to
represent such proofs. Since in order to check the closing conditions for the
critical pairs, CeTA has to compute them anyway, we do not require them in
the certificate. We just require the claim that the system is strongly or almost
parallel closed, together with a bound on the length of the rewrite sequences to

51

Chapter 3 Closing Critical Pairs

join the critical pairs, which is necessary to ensure termination of the certifier.
In case of Theorem 3.30 the certificate contains the critical-pair-closing system
C together with a termination proof.2 Certificates for commutation are not yet
supported, since currently no tool produces them, and CPF does not contain a
specification for commutation proofs.

3.7 Summary
In this chapter we presented the formalization of three classical criteria for
confluence and commutation of (left-)linear rewrite systems. Building on top of
IsaFoR we formalized proofs that linear strongly closed systems, and left-linear
(almost) parallel closed systems are confluent (commute). The major difference
to the original paper proof is our definition of the overlap between two parallel
steps that are represented via multihole contexts. Finally we extended the
criteria using critical-pair-closing systems.

As expected IsaFoR provided invaluable support on the one hand, e.g. by its
theories on critical pairs and multihole contexts, and on the other hand, it was
also extended with new facts about lists, multisets, multihole contexts, etc.

Concerning future work, another important extension of the results of Huet
and Toyama due to van Oostrom [78] is using multisteps −→○ which allow nested
non-overlapping redexes. This extension not only strengthens Huet’s criterion
in the first-order world but also makes it applicable to higher-order rewriting,
where using parallel steps fails due to β-reduction.

Definition 3.33. A TRS R is development closed if all critical pairs s←⋊→ t
of R satisfy s −→○ R t. It is almost development closed if s −→○ · ∗← t for all
overlays s←⋉⋊→ t and s −→○ t for all inner critical pairs s←·⋊→ t.

Theorem 3.34 (van Oostrom [78]). Every left-linear and almost development
closed TRS is confluent.

A similar extension is possible for the results on critical-pair-closing systems.
However, although the paper proofs superficially look very similar, and do
employ similar ideas, obtaining a formalized proof will require serious effort.
In fact neither our representation of (parallel) rewrite steps, nor our definition
of ▲, nor the idea of using an induction on the source of the peak to avoid

2CeTA contains support for a wide range of termination criteria that is easy to reuse.

52

3.7 Summary

reasoning about combining steps, carry over. To make the concepts that are
hard to formalize in a proof assistant, e.g. measuring the amount of overlap
between two multisteps or the descendants of a multistep, Hirokawa and
Middeldorp [43] suggested to use proof terms to obtain a rigorous proof (and
at the same time extended the result to commutation). This is a step forward
but more is needed to obtain a formalized proof, also for the extension to
higher-order systems. In particular, we anticipate the extensive use of sets of
positions (in [43]) to be problematic without alternative notions. We plan to
employ residual theory [105, Section 8.7] and to develop a notion of overlap for
multisteps similar to Definition 3.15 to close the gap.

53

Chapter 4

Rule Labeling
In mathematics you don’t understand things.

You just get used to them.
John von Neumann

The rule labeling heuristic aims to establish confluence of (left-)linear term
rewrite systems via decreasing diagrams. In this chapter we present a formal-
ization of a confluence criterion based on the interplay of relative termination
and the rule labeling in Isabelle. Moreover, we report on the integration of this
result into CeTA, facilitating the checking of confluence certificates based on
decreasing diagrams.

Decreasing diagrams [76] provide a complete characterization of confluence
for abstract rewrite systems whose convertibility classes are countable. This
confluence criterion states that a labeled abstract rewrite system is confluent if
each of its local peaks can be joined decreasingly (see Figure 8(a), where <α
indicates that any label below α may be used, and > is a well-founded order
on the labels. We will introduce these notions formally in Section 4.1). As a
criterion for abstract rewrite systems, decreasing diagrams can be applied to
first- and higher-order rewriting, including term rewriting and the λ-calculus.
Van Oostrom [79] presented the rule labeling heuristic, which labels rewrite
steps by their rules and yields a confluence criterion for linear term rewrite
systems by checking decreasingness of the critical peaks. The rule labeling has
successfully been implemented by Aoto [2] and Hirokawa and Middeldorp [42].

We consider a recent powerful confluence result for term rewrite systems,
exploiting relative termination and decreasing diagrams that makes the rule
labeling applicable to left-linear system. Our aim was to formalize [115,
Corollary 16] for a specific labeling culminating in Theorem 4.6. Actually the
formal proof of Theorem 4.6 is obtained by instantiating the more general
result of Theorem 4.27 appropriately. Hence, confluence proofs according to

55

Chapter 4 Rule Labeling

these theorems are now checkable by CeTA. We achieved this via the following
steps:

• Build on local decreasingness for abstract rewrite systems [23,28,113].

• Perform a detailed analysis of how local peaks can be joined for linear
and left-linear term rewrite systems (Section 4.2.1).

• Use the detailed analysis of local peaks to formalize the notion of a
labeling and a confluence result for term rewrite systems parametrized by
a labeling (Section 4.2.2). In this way it is ensured that the formalization
is reusable for other labelings stemming from [115].

• Instantiate the result from Section 4.2.2 to obtain concrete confluence
results. We demonstrate how this instantiation can be done, culminating
in a formal proof of Theorem 4.27 (Section 4.3).

• Finally we made our formalization executable to check proof certificates:
we suitably extended CPF to represent proofs according to Theorem 4.27
and implemented dedicated check functions in our formalization, enabling
CeTA to inspect, i.e., certify, such confluence proofs (Section 4.3.3).

The remainder of this chapter is organized as follows. Additional preliminaries
are introduced in the next section. Based on results for abstract rewriting
and the notion of a labeling, Section 4.2 formulates conditions that limit the
attention to critical peaks rather than arbitrary local peaks in the case of
first-order term rewriting. Section 4.3 instantiates these results with concrete
labelings to obtain corollaries that ensure confluence.

4.1 Preliminaries
The decreasing diagrams technique is based on labeling each rewrite step such
that all local peaks can be joined decreasingly. In order to assign such labels
to steps we will need to decorate them with more information. If ℓ→ r ∈ R, p
is a position, and σ is a substitution we call the triple π = ⟨p, ℓ→ r, σ⟩ a redex
pattern, and write pπ, ℓπ, rπ, σπ for its position, left-hand side, right-hand side,
and substitution, respectively. We write →π (or →pπ ,ℓπ→rπ ,σπ) for a rewrite
step at position pπ using the rule ℓπ → rπ and the substitution σπ. A redex
pattern π matches a term t if t|pπ = ℓπσπ, in which case t|pπ is called the

56

4.1 Preliminaries

redex. Let π1 and π2 be redex patterns that match a common term. They are
called parallel, written π1 ∥ π2, if pπ1 ∥ pπ2 . If P = {π1, π2, . . . , πn} is a set of
pairwise parallel redex patterns matching a term t, we denote by t→∥ P t′ the
parallel rewrite step from t to t′ by P , i.e., t→π1 · →π2 · · · →πn t′.

On the abstract rewriting level we label steps by presenting the rewrite
relation as a family of labeled steps. Let I be an index set. We write {→α}α∈I

to denote the ARS → where → is the union of →α for all α ∈ I. Let {→α}α∈I

be an ARS and let > and ⩾ be relations on I. Two relations > and ⩾ are
called compatible if ⩾ ·> ·⩾ ⊆ >. Given a relation ≽ we write→ ≼α1··· αn for the
union of all →β with αi ≽ β for some 1 ⩽ i ⩽ n. Similarly, ≼S is the set of all
β such that α ≽ β for some α ∈ S. We call α and β extended locally decreasing
(for > and ⩾) if α← ·→β ⊆ ↔∗

<α
· →=

⩽β · ↔
∗

<αβ · =

⩽α← ·↔
∗

<β
. If there exist a

well-founded order > and a preorder ⩾, such that > and ⩾ are compatible, and
α and β are extended locally decreasing for all α, β ∈ I then the ARS {→α}α∈I

is extended locally decreasing (for > and ⩾). We call an ARS locally decreasing
(for >) if it is extended locally decreasing for > and =, where the latter is the
identity relation. In the sequel, we often refer to extended locally decreasing as
well as to locally decreasing just by decreasing, whenever the context clarifies
which concept is meant or the exact meaning is irrelevant. In the literature the
above condition is referred to as the conversion version of decreasing diagrams,
Figure 8(b). In its valley version, Figure 8(a), the condition reads as follows:
α←·→β ⊆ →∗

<α
·→=

⩽β ·→
∗

<αβ · ∗

<αβ←· =

⩽α←·
∗

<β
←. In the sequel we always refer

to the conversion version of decreasing diagrams, except when stated otherwise
explicitly. The main result on decreasing diagrams is due to van Oostrom.

Theorem 4.1 (van Oostrom [79]). Locally decreasing ARSs are confluent.

In the remainder of this section we are concerned with the formalization of
the following variation of the result from [41, Theorem 2]:

Lemma 4.2. Every extended locally decreasing ARS is confluent.

It is interesting to note that in [42], the journal version of [41], extended local
decreasingness is avoided by employing the predecessor labeling. Originally
the authors used the source labeling, wherein a step s → t is labeled by s,
and ⩾ =→∗ for the weak order. Consequently, any rewrite step s′ → t′ with
s→∗ s′ has a label s′ with s ⩾ s′. In the predecessor labeling, a rewrite step
can be labeled by an arbitrary predecessor, i.e., we have s →u t if u →∗ s.

57

Chapter 4 Rule Labeling

·
· ·

· ·

· ·

·

α β

<α

∗

<β
∗

β

=
α

=
<αβ

∗

<α
β

∗

(a) Valley version.

·

· ·· ·

· ·

α β

<α

∗

<β

∗
β

=

α
=

<αβ

∗

(b) Conversion version.

Figure 8: Locally decreasing diagrams.

Now, if s→u t and s→∗ s′ → t′, we may label the step from s′ to t′ by u, the
same label as s→u t. In this way, the need for the weak comparison ⩾, and
hence extended local decreasingness, is avoided. As the proof of Lemma 4.2
demonstrates, this idea works in general, i.e., extended local decreasingness
can be traded for assigning more than one label to each rewrite step. In the
context of automation, however, assigning just one (computable) label to every
rewrite step is very attractive, as confluence tools must show critical peaks
decreasing and confluence certifiers must check the related proof certificates.

In the rest of this section, we describe our formalized proof of Lemma 4.2.
Given an ARS that is extended locally decreasing for > and ⩾, the proof in [41]
constructs a single order ≻ on sets of labels and establishes local decreasingness
of the ARS for >. We do the same, but use a simplified proof for the following
key lemma, which allows us to use > directly.

Lemma 4.3. Every extended locally decreasing ARS is locally decreasing.

The idea is to set ⇒α =→ ⩽α and show that ⇒ is locally decreasing.1 This
establishes the claim because ⋃

α∈I⇒α = ⋃
α∈ ⩽I→α = ⋃

α∈I→α, and therefore,
⇒ = {⇒α}α∈I and → = {→α}α∈I are the same ARS, labeled in two different
ways. The next example demonstrates some peculiarities of this approach.

Example 4.4. Consider the ARS {→α}α∈{1, 1.5, 2} where →1 = {(a, b), (c, d)},
→1.5 = {(b, d)}, and→2 = {(a, c)}. This ARS is extended locally decreasing for

1Compared to [41], we use ⩽α instead of Cα = (⩽α) \ (<α).

58

4.1 Preliminaries

a

b c

d

1

1.5

2
1

(a) Extended locally decreasing.

a

b c

d
1

2

2

1

(b) Locally decreasing.

a

b c

d

1.5

2

2

1.5

(c) Locally decreasing.

Figure 9: (Extended) locally decreasing peaks.

the orders > = {(x, y) | x, y ∈ Q⩾0 such that x− y ⩾ 1} and ⩾Q, as depicted
in Figure 9(a). We have

=⇒
2

= {(a, b), (c, d), (a, c), (b, d)}

=⇒
1.5

= {(b, d), (a, b), (c, d)}

=⇒
1

= {(a, b), (c, d)}

where e.g. →1.5 ⊆ ⇒2 since 2 ⩾Q 1.5. Consequently, ⇒ = ⇒1 ∪ ⇒1.5 ∪ ⇒2.
To establish local decreasingness of the related ARS {⇒α}α∈{1,1.5,2} the peak
b 1⇐ a⇒2 c (emerging from b 1← a→2 c) must be considered, which can be
closed in a locally decreasing fashion via b⇒2 d 1⇐ c (based on b→1.5 d 1← c),
as in Figure 9(b). Note that b⇒1.5 d 1⇐ c would not establish decreasingness
for >. However, the construction also admits the peak b 1.5⇐ a⇒2 c, for which
there is no peak b 1.5← a →2 c in the original ARS, as it does not contain
the step b 1.5← a. Still, this peak can be closed locally decreasing for >, see
Figure 9(c), based on the steps in the diagram of Figure 9(a).

Proof of Lemma 4.3. We assume the ARS {→α}α∈I is extended locally de-
creasing for > and ⩾ and establish local decreasingness of the ARS {⇒α}α∈I

for > by showing
⇐=
α
·=⇒

β
⊆ ∗⇐⇒

<α
· ==⇒

β
· ∗⇐=⇒

<αβ
· =⇐=

α
· ∗⇐⇒

<β
(4.1)

for α, β ∈ I. Assume that x α⇐ · ⇒β y. By the definition of ⇒, there are
α′ ⩽ α and β′ ⩽ β such that x α′← · →β′ y. Because → is extended locally

59

Chapter 4 Rule Labeling

decreasing, this implies that

x
∗←−→

<α′
· =−−→

⩽β′
· ∗←−−→

<α′β′
· =←−−

⩽α′
· ∗←−→

<β′
y

Consider a label γ ∈ <α′, i.e., γ < α′. By compatibility, this implies γ < α,
i.e., γ ∈ <α. Consequently, ↔ <α′ ⊆ ⇔ <α. Similarly, if γ ∈ ⩽β′ then γ ∈ ⩽β,
because ⩾ is transitive, and hence →=

⩽β′ ⊆ ⇒=
β . Continuing in this fashion we

obtain
x

∗⇐⇒

<α
· ==⇒

β
· ∗⇐=⇒

<αβ
· =⇐=

α
· ∗⇐⇒

<β
y

This establishes (4.1). Consequently, ⇒ is locally decreasing.

Proof of Lemma 4.2. Now confluence of extended locally decreasing ARSs
immediately follows from Lemma 4.3 and Theorem 4.1.

4.2 Formalized Confluence Results
This section builds upon the result for ARSs from the previous section to
prepare for confluence criteria for TRSs. First we recall the rule labeling [79],
which maps each rewrite step to a natural number based on the rewrite rule
applied in the step.
Definition 4.5. Let i : R → N be an index mapping, which associates to every
rewrite rule a natural number. The function li(s→π t) = i(ℓπ → rπ) is called
rule labeling. Labels due to the rule labeling are compared by >N and ⩾N.

Our aim is to formalize the following theorem, which is one of the main
results of [115].
Theorem 4.6 (Valley version of decreasing diagrams). A left-linear TRS is
confluent if its duplicating rules terminate relative to its other rules and all its
critical peaks are decreasing for the rule labeling.

Before preparing for its proof, we illustrate the technique on an example.
Example 4.7 (Cop #20). Consider the TRS R from [34, Example 2]. It
consisting of the following five rewrite rules, where we indicate the index
mapping i for the rule labeling in the subscripts:

hd(x : y)→0 x inc(x : y)→0 s(x) : inc(y) nats→0 0 : inc(nats)
tl(x : y)→0 y inc(tl(nats))→1 tl(inc(nats))

60

4.2 Formalized Confluence Results

The rules give rise to one critical peak that is labeled by li as

inc(tl(0 : inc(nats))) 0← inc(tl(nats))→1 tl(inc(nats))

This peak can be closed using the valley

inc(tl(0 : inc(nats)))→0 inc(inc(nats))
0← tl(s(0) : inc(inc(nats)))
0← tl(inc(0 : inc(nats)))
0← tl(inc(nats))

Clearly all labels in the valley are dominated by label 1 in the peak. Hence
the only critical peak of R is decreasing for the given rule labeling. Since R
does not contain duplicating rules, the relative termination condition vacuously
holds, and consequently R is confluent by Theorem 4.6.

To support other confluence results, in the formalization we did not follow
the easiest path, i.e., suit the definitions and lemmas directly to Theorem 4.6.
Rather, we adopted the approach from [115], where all results are established
via labeling functions satisfying some abstract properties. Apart from avoiding
a monolithic proof, this has the advantage that similar proofs need not be
repeated for different labeling functions. Instead it suffices to establish that the
concrete labeling functions satisfy some abstract conditions. In this approach
decreasingness is established in three steps. The first step comprises joinability
results for local peaks (Section 4.2.1). The second step (Section 4.2.2) formulates
abstract conditions with the help of labeling functions that admit a finite
characterization of decreasingness of local peaks. Finally, based on the previous
two steps, the third step (Section 4.3) then obtains confluence results by
instantiating the abstract labeling functions with concrete ones, e.g. the rule
labeling. So only the third step needs to be adapted when formalizing new
labeling functions, as steps one and two are unaffected. The content of this
section is part of the theory Decreasing_Diagrams2.thy in IsaFoR.

4.2.1 Local Peaks
As IsaFoR already supported Knuth-Bendix’ criterion [98], it contained results
for joinability of local peaks and the critical pair lemma. However, large parts
of the existing formalization could not be reused directly as the established

61

http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/file/1ad7cb6207d7/thys/Confluence_and_Completion/Decreasing_Diagrams2.thy

Chapter 4 Rule Labeling

s

t u

v

r 1
←

ℓ 1

ℓ2 →
r2

ℓ2 →
r2

r 1
←

ℓ 1

(a) Parallel peak.

s

t u

· ·

?

r 1
←

ℓ 1 ℓ2 →
r2

(b) Function peak.

s

t u

v

r 1
←

ℓ 1

ℓ2 →
r2

ℓ2 →
r2

∥

r 1
←

ℓ 1

(c) Variable peak.

Figure 10: Three kinds of local peaks.

results lacked information required for ensuring decreasingness. For instance,
to obtain decreasingness for the rule labeling in case of a variable peak, the
rewrite rules employed in the joining sequences are crucial, but the existing
formalization only states that such a local peak is joinable. On the other
hand, the existing notion of critical pairs from IsaFoR could be reused as the
foundation for critical peaks. Since the computation of critical pairs requires a
formalized unification algorithm, extending IsaFoR admitted focusing on the
tasks related to decreasingness.

Local peaks can be characterized based on the positions of the diverging
rewrite steps. Either the positions are parallel, called a parallel peak, or one
position is above the other. In the latter situation we further distinguish
whether the lower position is at a function position, called a function peak, or
at/below a variable position of the other rule’s left-hand side, called a variable
peak. More precisely, for a local peak

t = s[r1σ1]p ← s[ℓ1σ1]p = s = s[ℓ2σ2]q → s[r2σ2]q = u (4.2)

there are three possibilities (modulo symmetry):

(a) p ∥ q (parallel peak),

(b) q ⩽ p and p\q ∈ PosF (ℓ2) (function peak),

(c) q ⩽ p and p\q /∈ PosF (ℓ2) (variable peak).

62

4.2 Formalized Confluence Results

local_peaks R =
{((s, r1, p1, σ1, True, t), (s, r2, p2, σ2, True, u)) | s t u r1 r2 p1 p2 σ1 σ2.
(s, t) ∈ rstep_r_p_s R r1 p1 σ1 ∧ (s, u) ∈ rstep_r_p_s R r2 p2 σ2}

parallel_peak R p =
(p ∈ local_peaks R ∧
(let ((s, r1, p1, σ1, b, t), (s, r2, p2, σ2, d, u)) = p in p1 ⊥ p2))

function_peak R p =
(p ∈ local_peaks R ∧
(let ((s, r1, p1, σ1, b, t), (s, r2, p2, σ2, d, u)) = p in
∃ r . p1 <#> r = p2 ∧ r ∈ poss (fst r1) ∧ is_Fun (fst r1 | r)))

variable_peak R p =
(p ∈ local_peaks R ∧
(let ((s, r1, p1, σ1, b, t), (s, r2, p2, σ2, d, u)) = p in
∃ r . p1 <#> r = p2 ∧ ¬ (r ∈ poss (fst r1) ∧ is_Fun (fst r1 | r))))

Listing 6: Characterization of local peaks.

For the situation of a left-linear TRS these cases are visualized in Figure 10.
It is easy to characterize parallel, function, and variable peaks in Isabelle,
see Listing 6, but it requires tedious notation. For instance the local_peaks
of a TRS R are represented as the set of all pairs (s, r1, p1, σ1, True, t) and
(s, r2, p2, σ2, True, u), with rewrite steps s →p1,r1,σ1 t and s →p2,r2,σ2 u. The
rewrite steps are formalized via the existing IsaFoR notion of rstep_r_p_s,
which represents a step s →p,ℓ→r,σ

R t as (s, t) ∈ rstep_r_p_s R (l, r) p σ.
Here True and False are used to recall the direction of a step, i.e., s→ t and
t ← s, respectively. This distinction is important for steps that are part of
conversions, because conversions may mix forward and backward steps. In the
definitions of function_peak and variable_peak the symbol <#> is used,
which is the IsaFoR operation for concatenating positions.

As the definition of function and variable peaks is asymmetric the five cases
of local peaks can be reduced to the above three by mirroring those peaks.
Then local peaks can be characterized as in Listing 7. Next we elaborate on
the three cases.

63

Chapter 4 Rule Labeling

p ∈ local_peaks R =⇒
parallel_peak R p ∨ variable_peak R p ∨ variable_peak R (snd p, fst p)
∨ function_peak R p ∨ function_peak R (snd p, fst p)

Listing 7: Cases of local peaks.

Case 1: Parallel Peaks Figure 10(a) shows the shape of a local peak where
the steps take place at parallel positions. For a peak t π1← s →π2 u with
π1 ∥ π2 we established that t →π2 v π1← u, where opposing steps apply the
same rule/substitution at the same position. The proof is straightforward and
based on a decomposition of the terms into a context and the redex.

Case 2: Function Peaks In general joining function peaks may involve rules
not present in the divergence, as indicated by the question mark in Figure 10(b).
To reduce the burden of joining infinitely many function peaks to joining the,
in case of a finite TRS finitely many, critical peaks, we formalized that every
function peak is an instance of a critical peak.

Lemma 4.8. Let t p,ℓ1→r1,σ1← s→q,ℓ2→r2,σ2 u with qq′ = p and q′ ∈ PosF (ℓ2).
Then there are a critical peak ℓ2µ[r1µ]q′ ← ℓ2µ → r2µ, a context C, and a
substitution τ where s = C[ℓ2µτ], t = C[(ℓ2µ[r1µ]q′)τ], and u = C[r2µτ].

This fact is folklore, see e.g. [105, Lemma 2.7.12]. We remark that it was
already present (multiple times) in IsaFoR, but concealed in larger proofs, e.g.
the formalization of orthogonality [67], and never stated explicitly.

As we do not enforce that the variables of a rewrite rule’s right-hand side
are contained in its left-hand side, such rules are also included in the critical
peak computation.

Case 3: Variable Peaks Variable overlaps, Figure 10(c), can again be joined
by the rules involved in the diverging step.2 We only consider the case that
ℓ2 → r2 is left-linear, as our main result assumes left-linearity. More precisely, if
q′ is the unique position in PosV(ℓ2) such that qq′ ⩽ p, x = ℓ2|q′ , and |r2|x = n
then we have t →ℓ2→r2 v, which is similar to the case for parallel peaks, as
the redex ℓ2σ becomes ℓ2τ but is not destroyed, and u →n

ℓ1→r1
v. To obtain

2This includes rules having a variable as left-hand side.

64

4.2 Formalized Confluence Results

this result we reason via parallel rewriting. The notions of parallel rewriting
described so far do not keep track of, for example, the applied rules. Thus
we use a different formulation of parallel steps, which record the information
(position, rewrite rule, substitution) of each rewrite step, i.e., the rewrite
relation is decorated with the contracted redex patterns.

Definition 4.9. For a TRS R the parallel rewrite relation →∥ is defined by
the following inference rules.

x
∅−→∥ x

ℓ→ r ∈ R

lσ
{⟨ϵ,ℓ→r,σ⟩}−−−−−−−→∥ rσ

s1
P1−→∥ t1 · · · sn

Pn−−→∥ tn

f(s1, . . . , sn) (1P1) ∪ ··· ∪ (nPn)−−−−−−−−−−−→∥ f(t1, . . . , tn)

Here for a set of redex patterns P = {π1, . . . , πm} by iP we denote the set
{iπ1, . . . , iπm} with iπ = ⟨ip, ℓ→ r, σ⟩ for π = ⟨p, ℓ→ r, σ⟩.

To use this parallel rewrite relation for closing variable peaks we formalized
the following auxiliary facts.3

Lemma 4.10. The following properties of the parallel rewrite relation hold:

(a) For all terms s we have s→∥ ∅ s.

(b) If s→∥ ∅ t then s = t.

(c) If s→∥ P t and q ∈ Pos(u) then u[s]q →∥ qP u[t]q.

(d) We have s→π t if and only if s→∥ {π} t.

(e) If σ(x)→π τ(x) and σ(y) = τ(y) for all y ∈ V with y ̸= x then tσ →∥ P tτ
with ℓπ′ → rπ′ = ℓπ → rπ for all π′ ∈ P .

(f) If s→∥ {π} ∪ P t then there is a term u with s→∥ {π} u→∥ P t.

(g) If s→∥ {π1,...,πn} t then s→π1 · · · →πn t.
3In a typical paper proof, these facts would be considered as self-evident. However, Isabelle
is not so easily convinced, so a proof is required. So rather than being an interesting result,
Lemma 4.10 serves to illustrate the level of detail that formalizations often require.

65

Chapter 4 Rule Labeling

(s, []) ∈ conv R

(s, t) ∈ rstep_r_p_s R r p σ (t, ts) ∈ conv R
(s, (s, r , p, σ, True, t) # ts) ∈ conv R

(s, t) ∈ rstep_r_p_s R r p σ (s, ts) ∈ conv R
(t, (s, r , p, σ, False, t) # ts) ∈ conv R

Listing 8: Conversions.

In principle the statements of Lemma 4.10 follow from the definitions using
straightforward induction proofs, building upon each other in the order they are
listed. However, the additional bookkeeping, required to correctly propagate
the information attached to the rewrite relation, makes them considerably
more involved than for the previous, agnostic notion of parallel rewriting.

Now for reasoning about variable peaks as in Figure 10(c) we decompose
u = s[r2σ]q and v = s[r2τ]q where σ(y) = τ(y) for all y ∈ V \ {x} and
σ(x) →p\qq′,ℓ1→r1 τ(x). From the latter by item (e) we obtain r2σ →∥ P r2τ ,
where all redex patterns in P use ℓ1 → r1. Then by item (c) we get s[r2σ]q →∥ qP

s[r2τ]q and finally s[r2σ]q →n
ℓ1→r1

s[r2τ]q with n = |qP | = |P | by item (g).

4.2.2 Local Decreasingness

This section presents a confluence result, see Corollary 4.16, based on decreas-
ingness of the critical peaks. Abstract conditions, via the key notion of a
labeling, will ensure that parallel peaks and variable peaks are decreasing.
Furthermore, these conditions imply that decreasingness of the critical peaks
implies decreasingness of the function peaks. For establishing (extended) local
decreasingness, a label must be attached to rewrite steps. To facilitate the
computation of labels, in the formalization conversions provide information
about the intermediate terms, applied rules, etc. In Listing 8 the definition of
conversions as an inductive set is provided. The first case states that the empty
conversion starting from a term s is a conversion. The second case states that if
s→R t, using rule r at position p with substitution σ, and there is a conversion
starting from t, where the list ts collects the details on the conversion, then

66

4.2 Formalized Confluence Results

there also is a conversion starting from s and the details for this conversion
are collected in the list where the tuple (s, r, p, σ, True, t) is added to the list ts.
While the first two cases of Listing 8 amount to an inductive definition of
rewrite sequences, together with the third case (which considers a step t← s
and a conversion starting from s), conversions are obtained. Here True and
False are used to recall the direction of a step, as in Listing 6.

Furthermore, labels are computed by a labeling function, having local in-
formation about the rewrite step, such as source and target term, applied
rewrite rule, position, and substitution, it is expected to label. For reasons of
readability we continue using mathematical notation (e.g., →∗ for sequences
and ↔∗ for conversions, etc.) with all information implicit but remark that
the formalization works on sequences and conversions with explicit information
as in Listing 8.

Definition 4.11. A labeling is a function l from rewrite steps to a set of labels
such that for all contexts C and substitutions σ the following properties are
satisfied:

• It is compatible with the strict order on labels: if l(s→π1 t) > l(u→π2 v)
then l(C[sσ]→C[π1σ] C[tσ]) > l(C[uσ]→C[π2σ] C[vσ]).

• It is compatible with the weak order on labels: if l(s→π1 t) ⩾ l(u→π2 v)
then l(C[sσ]→C[π1σ] C[tσ]) ⩾ l(C[uσ]→C[π2σ] C[vσ]).

• It is compatible with directions: l(s→π t) = l(t π← s).

Here C[πσ] denotes ⟨qp, ℓ→ r, τσ⟩ for π = ⟨p, ℓ→ r, τ⟩ and C|q = □.

As the co-domain of a labeling is a set of labels, a labeling according to
Definition 4.11 maps a single rewrite step to a single label, which is different
from how (some) ARSs are labeled in Section 4.1. The rule labeling is a labeling
in our sense.

In the presence of a labeling, conversions can be labeled at any time. This
avoids lifting many notions (such as rewrite steps, local peaks, rewrite sequences,
etc.) and results from rewriting to labeled rewriting.

In the next definition a labeling is applied to conversions via the equations

• l(t↔0 t) = ∅,

• l(s→π t↔∗ u) = {l(s→π t)} ∪ l(t↔∗ u), and

67

Chapter 4 Rule Labeling

• l(s π← t↔∗ u) = {l(s π← t)} ∪ l(t↔∗ u).

Definition 4.12. A local peak t π1← s →π2 u is extended locally decreasing
(for a labeling l and orders > and ⩾) if there is a local diagram, i.e., t↔∗ t′ →=

t′′ ↔∗ u′′ =← u′ ↔∗ u such that its labels are extended locally decreasing, i.e.,

• l(t↔∗ t′) ⊆ <l(t π1← s),

• l(t′ →= t′′) ⊆ ⩽ l(s→π2 u),

• l(t′′ ↔∗ u′′) ⊆ <l(t π1← s→π2 u),

• l(u′′ =← u′) ⊆ ⩽ l(t π1← s), and

• l(u′ ↔∗ u) ⊆ <l(s→π2 u).

Following [113], we separate (local) diagrams (where rewriting is involved)
from decreasingness (where only the labels are involved). In contrast to the
valley version of decreasing diagrams, as employed in [68], where a sequence→∗

can be decomposed into →∗

<α
· →=

⩽β · →
∗

<αβ based on the sequence of labels,
this is no longer possible for the conversion version (as there is no guarantee
that the step →=

⩽β is oriented correctly). Hence we made the decomposition
explicit for the conversion version.

The corresponding predicate in IsaFoR is given in Listing 9 where extended
local decreasingness (eldc) of a local peak p is expressed via the existence of
conversions cl1, cl2, cr1, cr2 and possibly empty steps sl and sr that close
the divergence caused by the local peak p in the shape of a local diagram
(ldc_trs).4 Here get_target gets the target of a rewrite step and first and last
get the first and last element of a conversion or rewrite sequence, respectively.
Moreover the labels of the underlying conversions are required to be extended
locally decreasing (eld_conv, ELD_1). Here ds (≼) S is the notation for ≼S
and r is the pair of relations (>,⩾).

Then a function peak is extended locally decreasing if the critical peaks are.

Lemma 4.13. Let l be a labeling and let all critical peaks of a TRS R be
extended locally decreasing for l. Then every function peak of R is extended
locally decreasing for l.

4The conversions cl2 and cr2 could be merged into a single conversion. However, in proofs
the symmetric version permits to reason about one side and obtain the other side for free.

68

4.2 Formalized Confluence Results

eldc R l r p =
(∃ cl1 sl cl2 cr1 sr cr2. ldc_trs R p cl1 sl cl2 cr1 sr cr2 ∧

eld_conv l r p cl1 sl cl2 cr1 sr cr2)

ldc_trs R p cl1 sl cl2 cr1 sr cr2 =
(p ∈ local_peaks R ∧ cl1 ∈ conv R ∧ sl ∈ seq R ∧ cl2 ∈ conv R ∧
cr1 ∈ conv R ∧ sr ∈ seq R ∧ cr2 ∈ conv R ∧
get_target (fst p) = first cl1 ∧ last cl1 = first sl ∧
last sl = first cl2 ∧ get_target (snd p) = first cr1 ∧
last cr1 = first sr ∧ last sr = first cr2 ∧ last cl2 = last cr2)

eld_conv l r p cl1 sl cl2 cr1 sr cr2 =
(ELD_1 r (l (fst p)) (l (snd p)) (map l (snd cl1)) (map l (snd sl))

(map l (snd cl2)) ∧
ELD_1 r (l (snd p)) (l (fst p)) (map l (snd cr1)) (map l (snd sr))
(map l (snd cr2)))

ELD_1 r β α σ1 σ2 σ3 =
(set σ1 ⊆ ds (fst r) {β} ∧ length σ2 ≤ 1 ∧ set σ2 ⊆ ds (snd r) {α} ∧
set σ3 ⊆ ds (fst r) {α, β})

Listing 9: Extended local decreasingness.

Proof. As every function peak is an instance of a critical peak (see Lemma 4.8),
the result follows from l being a labeling (Definition 4.11).

The notion of compatibility (between a TRS and a labeling) admits a finite
characterization of extended local decreasingness.

Definition 4.14. Let l be a labeling. We call l compatible with a TRS R if all
parallel peaks and all variable peaks of R are extended locally decreasing for l.

The key lemma establishes that if l is compatible with a TRS, then all local
peaks are extended locally decreasing.

Lemma 4.15. Let l be a labeling that is compatible with a TRS R. If the
critical peaks of R are extended locally decreasing for l, then all local peaks
of R are extended locally decreasing for l.

69

Chapter 4 Rule Labeling

Proof. The cases of variable and parallel peaks are taken care of by compati-
bility. The case of function peaks follows from the assumption in connection
with Lemma 4.13. The symmetric cases for function and variable peaks can be
resolved by mirroring the local diagrams.

Representing a TRS R over the signature F and variables V as the ARS
over objects T (F ,V) and relations →α = {(s, t) | s→π t and l(s→π t) = α}
for some labeling l, Lemma 4.2 immediately applies to TRSs. To this end,
extended local decreasingness formulated via explicit rewrite sequences with
labeling functions is mapped to extended local decreasingness on families of
abstract rewrite relations. Finally, we are ready to formalize a confluence result
for first-order term rewriting.

Corollary 4.16. Let l be a labeling compatible with a TRS R, and let >
and ⩾ be a well-founded order and a compatible preorder, respectively. If the
critical peaks of R are extended locally decreasing for l and > and ⩾ then R is
confluent.

Concrete confluence criteria are then obtained as instances of the above
result by instantiating l. For example, Theorem 4.6 is obtained by showing
that its relative termination assumption in combination with the rule labeling
yields a compatible labeling for left-linear TRSs.

4.3 Checkable Confluence Proofs

In this section we instantiate Corollary 4.16 to obtain concrete confluence
results, first for linear TRSs in Section 4.3.1, and then for left-linear TRSs
in Section 4.3.2. Afterwards we discuss the design of the certificates, check-
able by CeTA, in Section 4.3.3. The formalization corresponding to the first
two subsections is part of Decreasing_Diagrams2.thy in IsaFoR, whereas the
executable check-functions from Section 4.3.3 can be found in the theory
Rule_Labeling_Impl.thy.

4.3.1 Linear Term Rewrite Systems

The rule labeling admits a confluence criterion for linear TRSs based on the
formalization established so far.

70

http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/file/1ad7cb6207d7/thys/Confluence_and_Completion/Decreasing_Diagrams2.thy
http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/file/1ad7cb6207d7/thys/Confluence_and_Completion/Rule_Labeling_Impl.thy

4.3 Checkable Confluence Proofs

a

b c a

d

d

1

0 0
1

1

=

(a)

c

b a

0 0

0
(b)

Figure 11: Decreasingness of critical peaks in Example 4.18.

Lemma 4.17. Let R be a linear TRS.

(a) The rule labeling is a labeling.

(b) Parallel peaks are extended locally decreasing for the rule labeling.

(c) Variable peaks of R are extended locally decreasing for the rule labeling.

(d) The rule labeling is compatible with R.

(e) If all critical peaks of R are extended locally decreasing for the rule
labeling, then R is confluent.

Proof. Item (a) follows from Definitions 4.11 and 4.5. For items (b) and (c) we
employ the analysis of parallel and variable peaks from Section 4.2.1. Item (d)
is then a consequence of items (b) and (c). Finally, item (e) amounts to an
application of Corollary 4.16.

We demonstrate the rule labeling on a simple example.

Example 4.18 (Cop #761). Consider the TRS consisting of the following
rules, where subscripts indicate labels for the rule labeling:

a→1 b a→1 d b→0 a c→0 a c→0 b

The critical peaks are decreasing for the rule labeling as depicted in Figure 11.

71

Chapter 4 Rule Labeling

4.3.2 Left-linear Term Rewrite Systems
That a locally confluent terminating left-linear TRS is confluent can be estab-
lished in the flavor of Lemma 4.17. The restriction to left-linearity arises from
the lack of considering non-left-linear variable peaks in Section 4.2.1. As the
analysis of such a peak would not give further insights we pursue another aim
in this section, i.e., the mechanized proof of Theorem 4.6.

It is well known that the rule labeling li is in general not compatible with
left-linear TRSs [42]. Thus, to obtain extended local decreasingness for variable
peaks, in Theorem 4.6 the additional relative termination assumption is ex-
ploited. To this end, we use the source labeling. Note that for the rule labeling
alone extended local decreasingness directly implies local decreasingness, as
⩾N is the reflexive closure of >N.
Definition 4.19. The source labeling maps a rewrite step to its source, i.e.,
lsrc(s→π t) = s. Labels due to the source labeling are compared using the
orders →+

Rd/Rnd
and →∗

R.
The relative termination assumption of Theorem 4.6 makes all variable peaks

of a left-linear TRS extended locally decreasing for the source labeling. These
variable peaks might not be extended locally decreasing for the rule labeling, as
the step u→∥ {ℓ1→r1} v in Figure 10(c) yields u→n v for n possibly larger than
one. Hence we introduce weaker versions of decreasingness and compatibility.
Definition 4.20. A diagram of the shape t α← s→ℓ2→r2

β u, t→ ⩽β v n

⩽α← u
is called weakly extended locally decreasing if n ⩽ 1 whenever r2 is linear, see
Figure 12. We call a labeling l weakly compatible with a TRS R if parallel and
variable peaks are weakly extended locally decreasing for l.

Following [115], the aim is to establish that the lexicographic combination
of a compatible labeling with a weakly compatible labeling (e.g., lsrc × li) is
compatible with a left-linear TRS. While weak extended local decreasingness
could also be defined in the spirit of extended local decreasingness (with a more
complicated join sequence or involving conversions), the chosen formulation
suffices to establish the result, eases the definition, and simplifies proofs. As
this notion is only used to reason about parallel and variable peaks, which
need not be processed by automatic tools, the increased generality would not
benefit automation.

Based on the peak analysis of Section 4.2.1, the following results are formal-
ized (such properties must be proved for each labeling function):

72

4.3 Checkable Confluence Proofs

s

t u

v

α β

ℓ2 →
r2

⩽β ⩽α
n

Figure 12: Weakly extended locally decreasing diagram.

Lemma 4.21. Let R be a left-linear TRS.

(a) Parallel peaks are weakly extended locally decreasing for the rule labeling.

(b) Variable peaks of R are weakly extended locally decreasing for the rule
labeling.

(c) The rule labeling is weakly compatible with R.

Proof. Items (a) and (b) are established by labeling the rewrite steps in the
corresponding diagrams based on the characterizations of parallel and variable
peaks of Figures 10(a) and 10(c), respectively. Item (c) follows from (a) and (b)
together with Lemma 4.17(a).

Similar results are formalized for the source labeling.

Lemma 4.22. Let R be a left-linear TRS whose duplicating rules terminate
relative to the other rules.

(a) The source labeling is a labeling.

(b) Parallel peaks are extended locally decreasing for the source labeling.

(c) Variable peaks of R are extended locally decreasing for the source labeling.

(d) The source labeling is compatible with R.

Proof. Closure of rewriting under contexts and substitutions immediately yields
item (a). Items (b) and (c) are established along the lines of the proof of
Lemma 4.21. Finally, item (d) follows from items (b) and (c) in combination
with Definition 4.14.

73

Chapter 4 Rule Labeling

Using this lemma, we proved the following results for the lexicographic
combination of the source labeling with another labeling.

Lemma 4.23. Let R be a left-linear TRS whose duplicating rules terminate
relative to the other rules and l be a labeling weakly compatible with R. Then
lsrc × l is a labeling compatible with R.

For reasons of readability we have left the orders > and ⩾ that are required
for (weak) compatibility implicit and just mention that the lexicographic
extension as detailed in [115] preserves the required properties. Finally, we
prove Theorem 4.6.

Proof of Theorem 4.6. From Lemma 4.21(c) in combination with Lemma 4.23
we obtain that lsrc× li is a labeling compatible with a left-linear TRS, provided
the relative termination assumption is satisfied. By assumption, the critical
peaks are extended locally decreasing for the rule labeling li. As along a
rewrite sequence labels with respect to lsrc never increase, the critical peaks
are extended locally decreasing for lsrc × li. We conclude the proof by an
application of Corollary 4.16.

Actually a stronger result than Theorem 4.6 has been established, as lsrc× li

might show more critical peaks decreasing than li alone, like in the following
example.

Example 4.24 (Cop #763). Consider the TRS R consisting of the single rule

f(f(x))→ f(g(f(x), f(x)))

That R is terminating can easily be shown by modern termination provers
(for instance, applying the dependency pair transformation and a tcap-based
dependency graph approximation suffices). Also note that Rd = R, Rnd = ∅,
and →+

Rd/Rnd
=→+

R. There is one critical peak:

f(f(g(f(x), f(x))))← f(f(f(x)))→ f(g(f(f(x)), f(f(x))))

Apart from reordering the steps from the right, the only valley for this peak is:

f(f(g(f(x), f(x))))→ f(g(f(g(f(x), f(x))), f(g(f(x), f(x)))))
← f(g(f(g(f(x), f(x))), f(f(x))))← f(g(f(f(x)), f(f(x))))

74

4.3 Checkable Confluence Proofs

Since there is only one rule in R all steps get the same label when applying
the rule labeling. Consequently, labeling this diagram decreasingly using the
rule labeling cannot succeed, because the sequence from the right consists of
two steps. However, using the source labeling, and hence also lsrc × li, the
diagram is clearly decreasing, because all terms in the valley are reachable
from f(f(f(x))) using →+

Rd/Rnd
.

Regarding a variant of Theorem 4.6 based on the conversion version of
decreasing diagrams the statement “As along a rewrite sequence labels with
respect to lsrc never increase, . . . ” in the above proof is no longer appropriate,
as rewrite sequences are replaced by conversions. Consequently, in contrast to
the valley version, the source labeling might destroy decreasingness, as shown
by the next example.

Example 4.25 (Example 4.18 continued). Although the critical diagram in
Figure 11(a) is decreasing for li it is not decreasing for lsrc × li as the label
of the step a→(a,1) b is not larger than the label of the step b (c,0)← c. The
problem is that a→∗ c does not hold.

To forbid the situation highlighted in Example 4.25, the property that the
labels of the conversions are smaller or equal to the source of the local peak
must be ensured.

Definition 4.26. A diagram of the shape t1 ← s→ tn, t1 ↔∗ t2 ↔∗ · · · ↔∗ tn

has the fan property if s→∗ ti for 1 ⩽ i ⩽ n.

The fan property is sketched in Figure 13, where the solid arcs indicate the
diagram and the dashed arcs the additional conditions.5 The fan property is
related to, but slightly different from source decreasingness [44], which demands
that, using the source labeling, every peak ← s→ is connected by a conversion
in which all labels are smaller than s. Our formalization covers the following
result, which is new in theory and IsaFoR:

Theorem 4.27 (Conversion version of decreasing diagrams). A left-linear
TRS is confluent if its duplicating rules terminate relative to its other rules
and all its critical peaks have local diagrams that both have the fan property
and are decreasing for the rule labeling.

5Note that s→∗ ti implies s→∗ ti−1 and s→∗ ti+1 if ti−1 ← ti → ti+1 and so the indicated
reductions suffice.

75

Chapter 4 Rule Labeling

∗ ∗

∗ ∗

∗ ∗

Figure 13: The fan property.

Proof. That lsrc × li is a labeling, is obtained as in the proof of Theorem 4.6.
The fan property ensures that a critical peak that is decreasing for the rule
labeling li is also decreasing for lsrc × li. We conclude by an application of
Corollary 4.16.

The following example demonstrates that the fan property is necessary for
Theorem 4.27 to be correct. Note that the TRS in Example 4.25 is confluent and
can hence only motivate the fan property but cannot show its indispensability.

Example 4.28 (Cop #762). Consider the TRS R consisting of the following
rules, where subscripts indicate labels for the rule labeling:

a→2 b f(a, b)→1 f(a, a) f(b, a)→1 f(a, a) f(a, a)→1 c g(x)→0 f(x, x)

Then Rd/Rnd is easily seen to be terminating, for example using the lexi-
cographic path order with a quasi-precedence that equates a and b and has
g > f > c. There are four critical peaks, all of which are decreasing with

76

4.3 Checkable Confluence Proofs

respect to the given rule labeling:

f(a, b) 2← f(a, a)→1 c f(a, b)→1 f(a, a)→1 c
f(b, a) 2← f(a, a)→1 c f(b, a)→1 f(a, a)→1 c
f(b, b) 2← f(a, b)→1 f(a, a) f(b, b) 0← g(b) 2← g(a)→0 f(a, a)
f(b, b) 2← f(b, a)→1 f(a, a) f(b, b) 0← g(b) 2← g(a)→0 f(a, a)

Nevertheless, R is not confluent: f(b, b)← f(a, b)← f(a, a)→ c is a conversion
between two distinct normal forms. Note that the local diagrams for the final
two critical peaks violate the fan property: g(a) is neither reachable from f(a, b)
nor from f(b, a).

Finally, we remark that in the formalization Theorem 4.6 is obtained by
instantiating Theorem 4.27. To this end, we formalized that the fan property
holds vacuously whenever the local diagram is a valley. The direct proof of
Theorem 4.6 on page 74 does not have a correspondence in the formalization but
it already conveys the proof idea of the more complex proof of Theorem 4.27.

4.3.3 Certificates

Next we discuss the design of the certificates for confluence proofs via Theo-
rem 4.27, i.e., how they are represented in CPF, and the executable checker
to verify them. A minimal certificate could just claim that the considered
rewrite system can be shown decreasing via the rule labeling. However, this
is undecidable, even for locally confluent systems [42]. Hence the certificate
contains the following entries: the TRS R, the index function i, (candidates
for) the joining conversions for each critical peak, an upper bound on the
number of rewrite steps required to check the fan property, and, in case R
is not right-linear, a relative termination proof for Rd/Rnd. The labels in
the joining conversions are not required in the certificate, since CeTA has to
check, i.e., compute them anyway. The same holds for the critical peaks. Note
that the (complex) reasoning required for parallel and variable peaks does
not pollute the certificates. The outline of a certificate for a confluence proof
according to Theorem 4.27 is shown in Figure 14.6 Besides elements for struc-

6In Figure 14 some boilerplate nodes and details are omitted—a full certificate in CPF
for Example 4.18 is available at http://cl-informatik.uibk.ac.at/experiments/2016/
rule_labeling/rule_labeling_conv.proof.xml.

77

http://cl-informatik.uibk.ac.at/experiments/2016/rule_labeling/rule_labeling_conv.proof.xml
http://cl-informatik.uibk.ac.at/experiments/2016/rule_labeling/rule_labeling_conv.proof.xml

Chapter 4 Rule Labeling

certificationProblem
input

trs
rule

lhs
rhs

...
proof

decreasingDiagrams
relativeTerminationProof
ruleLabelingConv

ruleLabelingFunction
ruleLabelingFunctionEntry

rule
label

...
convertibleCriticalPeaks

convertibleCriticalPeak
source
conversionLeft

conversion
rewriteSequence
conversion

conversionRight
conversion
rewriteSequence
conversion

...

Figure 14: Structure of a Rule Labeling Certificate in CPF.

turing the certificate (decreasingDiagrams, ruleLabelingConv), additions
to CPF, for representing proofs via Theorem 4.27, are the elements to repre-
sent the rule labeling (ruleLabelingFunction) and the joining conversions
convertibleCriticalPeaks. Conversions and rewrite sequences themselves
were already representable in CPF (conversion, rewriteSequence) and easy

78

4.3 Checkable Confluence Proofs

to reuse. To check such a certificate CeTA performs the following steps:

(a) Parse the certificate. To parse the CPF elements that were newly intro-
duced we extended CeTA’s parser accordingly.

(b) Check the proof for relative termination. Luckily, CeTA already supports
a wide range of relative termination techniques, so that here we just
needed to make use of existing machinery.

(c) Compute all critical peaks of the rewrite system specified in the certificate.

(d) For each computed critical peak, find and check a decreasing joining
conversion given in the certificate. To check decreasingness (see Listing 9)
we require the decomposition of the joining conversions to be explicit in
the certificate. As the confluence tools that generate certificates might
use different renamings than CeTA when computing critical pairs, the
conversions given in the certificate are subject to a variable renaming.
Thus, after computing the critical peaks, CeTA has to consider the joining
conversions modulo renaming of variables. Then checking that they form
a local diagram and that the labels are extended locally decreasing is
straightforward.

(e) Check the fan property. The certificate contains an upper bound on the
number of rewrite steps required to reach the terms in the conversions
from the source of the peak. This ensures termination of CeTA when
checking the existence of suitable rewrite sequences.

CeTA also supports checking decreasingness using the valley version of decreas-
ing diagrams, i.e., certifying applications of Theorem 4.6. In that case splitting
the joining sequences in the certificate is not required: for every critical peak
just two rewrite sequences need to be provided. CeTA can automatically find
a split if one exists: given two natural numbers α and β and a sequence σ
of natural numbers, is there a split σ = σ1σ2σ3 such that σ1 ⊆ <α, σ2 ⊆ ⩽β
with length of σ2 at most one, and σ3 ⊆ <αβ? The checker employs a simple,
greedy approach. That is, we pick the maximal prefix of σ with labels smaller
α as σ1. If the next label is less or equal to β we take it as σ2 and otherwise
we take the empty sequence for σ2. Finally, the remainder of the sequence is
σ3. A straightforward case analysis shows that this approach is complete, i.e.,
otherwise no such split exists.

79

Chapter 4 Rule Labeling

4.4 Assessment

First we detail why Theorem 4.6 is an adequate candidate for formalization and
certification. On the one hand, regarding the aspect of automation, it is easily
implementable as the relative termination requirement can be outsourced to
external relative termination provers and the rule labeling heuristic has already
been implemented successfully [2,41]. Furthermore, it is a powerful criterion
as demonstrated by the experimental evaluation in Section 8.3. On the other
hand, regarding the aspect of formalization, it is challenging because it involves
the combination of different labeling functions (in the sense of [115]). Hence,
in our formalization Theorem 4.6 is not established directly, but obtained as
a corollary of more general results. In particular Lemma 4.23 is based on a
more general result, which allows different labeling functions to be combined
lexicographically. This paves the way for reusing the formalization described
here when tackling the remaining criteria in [115], which are based on more
flexible combinations of labeling functions, and use labelings besides the source
labeling, Lemma 4.22, and the rule labeling, Lemma 4.17. For example, labels
can also be defined based on the path to a rewrite step, or the redex that is
being contracted. In order to certify the corresponding proofs, we will also
have to extend the CPF format with encodings of those labelings.

The required characterization of closing local peaks, see Figure 10, provides
full information about the rewrite steps involved in the joining sequences. As
this characterization is the basis for many confluence criteria—not necessarily
relying on decreasing diagrams—this result aids future certification efforts.
We anticipate that the key result for closing variable peaks for the left-linear
case, see Section 4.2.1, does not rely on the annotated version of parallel
rewriting, but as [115] also supports labelings based on parallel rewriting, the
developed machinery should be useful for targeting further confluence results
from. Needless to say, parallel rewriting is handy on its own. The formalization
described in this article covers a significant amount of the results presented
in [115]. As explained, additional concepts, e.g. the annotated version of parallel
rewriting were formalized with the remaining criteria in mind. However, for
some results that are not covered yet, e.g. persistence [5,25], we anticipate that
even formalizing the preliminaries requires significant effort.

Next we discuss the usefulness of existing formalizations for this work. The
existing machinery of IsaFoR provided invaluable support. We regard our efforts
to establish an annotated version of parallel rewriting not as a shortcoming of

80

4.5 Summary

IsaFoR, but as a useful extension to it. On the contrary, we could employ many
results from IsaFoR without further ado, e.g., completeness of the unification
algorithm to compute critical peaks, plain rewriting to connect parallel steps
with single steps, and the support for relative termination. That Lemma 4.8
occurred several times in IsaFoR can be traced to textbook proofs, e.g. [11],
where this result is not made explicit either. Instead it is established in the
scope of a larger proof of the critical pair lemma. Still, in later proofs the
result is used as if it would have been established explicitly. In IsaFoR these
proofs have been duplicated, but as formalization papers typically come with
code refactoring these deficiencies have been fixed. Ultimately our aim in the
formalization was to follow paper proofs as closely as possible. The benefit of
this choice is that this way, shortcomings in existing proofs can be identified
and eradicated. As our formalization covers and combines results from various
sources, the notions used in the papers had to be connected. As already
mentioned, while different notations are typically identified in paper proofs, in
the formalization this step has to be made explicit. To avoid this drawback in
the future our recommendation is to strive for more standard notation, also in
paper proofs.

Finally, differences to [115] are addressed. The concepts of an L-labeling
and an LL-labeling from [115] have been generalized to the notion of a labeling
compatible with a TRS, while weak-LL-labelings are represented via weakly
compatible labelings here.7 This admits the formulation of the abstract condi-
tions such that a labeling ensures confluence (see Corollary 4.16) independent
from the TRS being (left-)linear. Furthermore we present a generalization
of Theorem 4.6 to the conversion version of decreasing diagrams, namely
Theorem 4.27.

4.5 Summary

In this chapter we presented the formalization of a result establishing confluence
of left-linear term rewrite systems based on relative termination and the rule
labeling. While our formalization admits stronger results in order to prepare
for further results from [115], we targeted Theorem 4.6, whose statement,

7The definitions of L-labelings and LL-labelings spell out the shape of the standard joining
valley for a variable peak for linear and left-linear TRSs, respectively, and then impose
restrictions on the occurring labels that ensure compatibility.

81

Chapter 4 Rule Labeling

in contrast to its proof, does not require the complex interplay of relative
termination and the rule labeling. Hence this criterion is easily implementable
for automated confluence tools, admitting the use of external termination
provers. Our formalization subsumes the original criterion for the rule labeling,
see Lemma 4.17(e), which is applicable to linear systems only. Dealing with
non-right-linear systems required an analysis of non-right-linear variable peaks,
and of the interplay with the relative termination condition. Furthermore,
whereas plain rule labeling can be proved correct by decreasing diagrams, the
involvement of the source labeling means that extended decreasing diagrams
are required. Hence the proof of Theorem 4.6 is significantly more involved
than the one of Lemma 4.17(e).

Despite the fact that any confluence proof by the conversion version of
decreasing diagrams can be completed into a confluence proof by the valley
version using the same labels [79, Theorem 3], conversions can be significantly
shorter than valleys [79, Example 8]. Regarding the conversion version of
decreasing diagrams, in automated tools the main obstacle is finding suitable
conversions. Even though simple heuristics [42, Section 4] have been proposed
to limit the explosion in the search space when considering conversions, most
automated confluence provers still favor the valley version. While those heuris-
tics suffice for the rule labeling, Theorem 4.27 shows that in a more complex
setting, conversions must satisfy additional restrictions, which make the search
for suitable conversions even more challenging.

82

Chapter 5

Redundant Rules
Not that I have anything much against redundancy.

But I said that already.
Larry Wall (199702271735.JAA04048@wall.org)

In this chapter we present a remarkably simple technique based on the removal
and addition of redundant rewrite rules, i.e., rules that can be simulated by other
rules, when (dis)proving confluence of term rewrite systems. We demonstrate
how automatic confluence provers benefit from the addition as well as the
removal of redundant rules. Due to their simplicity, our transformations were
easy to formalize in a proof assistant and are thus amenable to certification.
Experimental results in Section 8.3 show the surprising gain in power.

Example 5.1 (Cop #442). Consider the TRS R consisting of the two rewrite
rules

f(f(x))→ x f(x)→ f(f(x))

The two non-trivial critical pairs

f(f(f(x)))←⋊→ x x←⋊→ f(f(f(x)))

are obviously joinable

f(f(f(x)))→R f(x)→R f(f(x))→R x

but not by a multistep, see Definition 2.34. Consequently, the result of van
Oostrom [78] on development closed critical pairs does not apply. After adding
the rewrite rule f(x)→ x to R, we obtain four new critical pairs

f(x)←⋊→ x x←⋊→ f(x) f(f(x))←⋊→ x x←⋊→ f(f(x))

83

Chapter 5 Redundant Rules

The new rule ensures that fn(x) −→○ x for all n ⩾ 0 and thus confluence of the
extension follows from Theorem 3.34.

First we establish that fn(x) −→○ x by induction on n. The claim is trivially
true for n = 0. Given fn−1(x) −→○ x, we can take substitutions σ and σ′ that
map x to fn−1(x) and x, respectively, and obtain f(x)σ −→○ xσ′, i.e., fn(x) −→○ x.

For each of the critical pairs s←⋊→ t, we have either s −→○ t or s←⋉⋊→ t
and s←−○ t, which implies s −→○ · ∗← t. Therefore the TRS is almost development
closed and thus confluent. Since the new rule can be simulated by the original
rules, f(x)→R f(f(x))→R x, also R is confluent.

Confluence of the TRS in Example 5.1 is hard to show directly: ACP 0.51,
CoLL-Saigawa 1.1, and CSI 1.1 all fail without the technique of this chapter,
but all three can prove confluence of the extended TRS. Below we explain how
such extensions can be found automatically.

The next example shows that also proving non-confluence may become easier
after adding rules.

Example 5.2 (Cop # 216). Consider the TRS R [22] consisting of the eight
rewrite rules

f(g(a), g(y))→ b f(x, y)→ f(x, g(y)) g(x)→ x a→ g(a)
f(h(x), h(a))→ c f(x, y)→ f(h(x), y) h(x)→ x a→ h(a)

All critical pairs are deeply1 joinable but R is not confluent. Two of the critical
pairs are

b←⋊→ f(h(g(a)), g(x)) c←⋊→ f(h(x), g(h(a)))

After adding them as rules

f(h(g(a)), g(x))→ b f(h(x), g(h(a)))→ c

new critical pairs are obtained, one of which is

b←⋊→ c
1A critical pair s←⋊→ t is deeply joinable if u ↓ v for any two reducts u of s and v of t.
The example defeats any non-confluence check based on proving non-joinability of peaks
starting from critical peaks.

84

5.1 Theory

Since b and c are different normal forms, the extension is obviously non-
confluent. Since the new rules can be simulated by the original rules, also R
is non-confluent. Of the three tools mentioned, ACP shows non-confluence by
first deriving the rule g(a)→ a, which can also be simulated by existing rules,
giving rise to a critical pair that extends to a non-joinable peak:

b← f(g(a), g(a))→ f(g(a), a)→∗ c

CoLL-Saigawa, and CSI (without the techniques from this chapter) fail.

The remainder of the chapter is structured as follows. In the next section
we describe the theory underlying the addition and removal of rules, and
Section 5.2 is devoted to its integration into CeTA. In Section 5.3 we sketch
several heuristics for finding redundant rules implemented in CSI.

5.1 Theory

In this section we present the easy theory behind the use of redundant rules for
proving confluence. For adding such rules we use the following folklore result.

Lemma 5.3. If ℓ→∗
R r for every rule ℓ→ r from S then →∗

R =→∗
R ∪ S .

Proof. The inclusion →∗
R ⊆ →∗

R ∪ S is obvious. For the reverse direction it
suffices to show that s→∗

R t whenever s→S t. The latter ensures the existence
of a position p in s, a rewrite rule ℓ→ r in S, and a substitution σ such that
s|p = ℓσ and t = s[rσ]p. We obtain ℓ→∗

R r from the assumption of the lemma.
Closure of →∗

R under contexts and substitutions yields the desired s→∗
R t.

Corollary 5.4. If ℓ→∗
R r for every rule ℓ→ r from S then R is confluent if

and only if R∪ S is confluent.

Proof. We obtain →∗
R = →∗

R ∪ S from the preceding lemma. Hence we also
have ↓R = ↓R ∪ S and ↑R = ↑R ∪ S . Therefore

↑R ⊆ ↓R ⇐⇒ ↑R ∪ S ⊆ ↓R ∪ S

Definition 5.5. A rule ℓ→ r ∈ R is redundant if ℓ→∗
R\{ℓ→r} r.

85

Chapter 5 Redundant Rules

By Corollary 5.4, if ℓ→ r ∈ R is redundant, then R is confluent if and only
if R \ {ℓ→ r} is confluent. In other words, removing a redundant rule does
not affect confluence of a TRS. For removing rules while reflecting2 confluence
(or adding rules while reflecting non-confluence) it suffices that the left- and
right-hand side are convertible with respect to the remaining rules.

Lemma 5.6. If ℓ↔∗
R r for every rule ℓ→ r from S then ↔∗

R ∪ S =↔∗
R.

Proof. The inclusion ↔∗
R ⊆ ↔∗

R ∪ S is obvious. For the reverse direction it
suffices to show that s↔∗

R t whenever s→S t. The latter ensures the existence
of a position p in s, a rewrite rule ℓ→ r in S, and a substitution σ such that
s|p = ℓσ and t = s[rσ]p. We obtain ℓ↔∗

R r from the assumption of the lemma.
Closure of ↔∗

R under contexts and substitutions yields the desired s↔∗
R t.

Corollary 5.7. If R is confluent and ℓ ↔∗
R r for every rule ℓ → r from S

then R∪ S is confluent.

Proof. From the preceding lemma and the confluence of R we obtain

↔∗
R ∪ S = ↔∗

R ⊆ ↓R ⊆ ↓R ∪ S

Hence R∪ S is confluent.

Example 5.8 (Cop #20). Reconsider the TRS from Example 4.7. Its five
rules are

hd(x : y)→ x inc(x : y)→ s(x) : inc(y) nats→ 0 : inc(nats)
tl(x : y)→ y inc(tl(nats))→ tl(inc(nats))

We have shown confluence of this system using the rule labeling, i.e., decreasing
diagrams. However, simply removing the last rule would make confluence
obvious, since the remaining four rules constitute an orthogonal TRS. And
indeed, because of the following joining sequences, the last rule is superfluous
and can be dropped:

inc(tl(nats))→ inc(tl(0 : inc(nats)))→ inc(inc(nats))
tl(inc(nats))→ tl(inc(0 : inc(nats)))→ tl(s(0) : inc(inc(nats)))→ inc(inc(nats))
2We are interested in transformations that reflect (rather than preserve) confluence, because
our goal is automation, and it is natural to work from the conclusion for finding proofs.

86

5.1 Theory

Some other examples from [34] can be dealt with in a similar fashion:
In [34, Example 1] the first rule is joinable using the other rules, and the
remaining system is orthogonal. The same argument (with a different joining
conversion) applies to [34, Example 5].

Corollary 5.7 can also be beneficial when dealing with non-left-linear systems,
as demonstrated by the following example.

Example 5.9 (Cop #233). Consider the TRS from [103] consisting of the
four rewrite rules

f(x, x)→ f(g(x), g(x)) f(x, y)→ f(h(x), h(y))
g(x)→ p(x) h(x)→ p(x)

Because of the conversion

f(x, x)→ f(h(x), h(x))→ f(p(x), g(x))→ f(p(x), p(x))
← f(g(x), p(x))← f(g(x), g(x))

we can remove the first rule. Since the resulting TRS is orthogonal and the
removed rule is convertible using the other rules, also the original TRS is
confluent.

It can also be beneficial to both add and remove rules. In particular adding
a redundant rule can help with removing other, problematic rules, as shown in
the following example.

Example 5.10 (Cop #412). Consider the TRS consisting of the three rewrite
rules

f(x, y)→ f(g(x), g(x)) f(x, x)→ a g(x)→ x

After adding the rule f(x, y) → a, which is justified by the rewrite sequence
f(x, y)→ f(g(x), g(x))→ a, we can remove the first two original rules, due to
the following conversions:

f(x, y)→ a← f(g(x), g(x)) f(x, x)→ a

The resulting TRS is orthogonal and hence confluent. Since the added rule
can be simulated by the original rules, and the removed rules are convertible
using the new rule, also the original TRS is confluent.

87

Chapter 5 Redundant Rules

While adding (or removing) rules using Corollary 5.4 is always safe in the
sense that we cannot lose confluence, it is easy to see that the reverse direction
of Corollary 5.7 does not hold in general. That is, removing convertible rules
can make a confluent TRS non-confluent as for example witnessed by the two
TRSs R = {a → b, a → c} and S = {b → a}. Clearly R is not confluent,
S ∪R is confluent, and b↔∗

R a.
We give one more example, showing that the removal of redundant rules can

considerably speed up finding a confluence proof.

Example 5.11 (Cop #424). Consider the TRS consisting of the following
two rules:

f(x)→ g(x, f(x)) f(f(f(f(x))))→ f(f(f(g(x, f(x)))))

This TRS is confluent by the simultaneous critical pair criterion of Okui [75]3.
Alas, there are 58 simultaneous critical pairs and indeed ACP 0.51, which
implements Okui’s criterion, does not terminate in ten minutes. While 58 looks
small, the simultaneous critical pairs become quite big. For example, with
t = g(f3(g(x, f(x))), f4(g(x, f(x)))), one of the simultaneous critical pairs is

f3(g(f(g(f(t), f(f(t))), f(f(g(f(t), f(f(t))))))))←−○⋊→ f5(g(f3(x), f4(x)))

and testing joinability using development steps is very expensive. In general, if
one takes the rules f(x) → g(x, f(x)) and fn(f(x)) → fn(g(x, f(x))), then the
number and size of the simultaneous critical pair will grow exponentially in n.
However, Corollary 5.7 is applicable—the second rule can be simulated by the
first rule in one step—and showing confluence of the first rule is trivial.

5.2 Formalization and Certification
The redundant rules technique is particularly well suited for certification for
the following reasons. First, since the theory we use is elementary, formalizing
it in a proof assistant is entirely straightforward. Moreover the generated

3Note that the given TRS is feebly orthogonal [80]. The key observation here is that any
simultaneous critical pair arises from a peak between a development step and a plain
rewrite step. By the orthogonalization procedure from [80], we can obtain an equivalent
peak of two orthogonal development steps, which is joinable by two development steps,
thus satisfying Okui’s criterion.

88

5.2 Formalization and Certification

proofs, while simple in nature, can become very large, which makes checking
them infeasible by hand, but easy for a machine. Finally, as demonstrated in
Section 8.3, the existing certifiable confluence techniques heavily benefit from
our transformations.

To add support for our transformations to CeTA we formalized the results
from Section 5.1 in Isabelle and integrated them into IsaFoR. The theory
Redundant_Rules.thy contains the theoretical results, whose formalization,
directly following the paper proof, requires a mere 100 lines of Isabelle, stressing
the simplicity of the transformations.

We extended CPF for representing proofs using addition and removal of
redundant rules and implemented dedicated check functions in the theory
Redundant_Rules_Impl.thy, enabling CeTA to certify such (non-)confluence
proofs. A certificate for (non-)confluence of a TRS R by an application of the
redundant rules transformation consists of three parts:

• the modified TRS R′,

• a certificate for the (non-)confluence of R′, and

• a justification for redundancy of the added and removed rules. Here for
the rules that were added, i.e., all ℓ→ r in S = R′ \R, we simply require
a bound on the length of the derivations showing ℓ→∗

R r. This bound is
necessary to ensure termination of the check function. For the deleted
rules in a non-confluence certificate, i.e., all ℓ → r in S = R \ R′, the
same bound is used for ℓ→∗

R′ r. For a confluence proof one can either
give explicit conversions ℓ↔∗

R′ r or rely on the bound again, which then
has to ensure ℓ ↓R′ r.

Implementing check functions for such a certificate is then straightforward. We
simply compute S \ R and R \ S and use the given bound and conversions to
ensure redundancy.

Whereas for certification we only need to check that the modified rules really
are redundant, the question of how to automatically find suitable rules for
addition and deletion is more intricate. In the next section we discuss and
evaluate our implementation of several possible approaches in the confluence
prover CSI, see also Chapter 8.

89

Chapter 5 Redundant Rules

5.3 Heuristics

CSI features a powerful strategy language, see Section 8.2, which allows to
combine confluence techniques in a modular and flexible manner, making it easy
to test different strategies that exploit redundant rules. We use the following
four heuristics to add and remove rules.

Joining Sequences (js) Our first strategy is to add (minimal) joining se-
quences of critical pairs as rules, i.e., in Corollary 5.4 we choose

S ⊆ {s→ u, t→ u | s←⋊→ t with s→∗
R u and t→∗

R u}

The underlying idea here is that critical peaks become joinable in a single step,
which is advantageous for other confluence criteria, for example rule labeling.
This heuristic solves e.g. Example 5.2.

Rewriting Right-Hand Sides (rhs) The second strategy for obtaining redun-
dant rules to add, is to rewrite right-hand sides of rules, i.e., in Corollary 5.4
set

S = {ℓ→ t | ℓ→ r ∈ R and r →R t}

Again the motivation is to produce shorter joining sequences for critical pairs,
facilitating the use of other confluence criteria. For instance, in Example 5.1
this heuristic derives the desired rule.

Forward Closures (fc) The final strategy for adding rules is based on instan-
tiating the right-hand side before rewriting it.

Definition 5.12. Given two variable disjoint rewrite rules ℓ1 → r1 and ℓ2 → r2
of a TRS R, a function position p in r1, and an mgu σ of r1|p and ℓ2, the
rewrite rule ℓ1σ → r1σ[r2σ]p is a forward closure of R. We write FC(R) for
the extension of R with all its forward closures.

We use this process in both directions, i.e., we also extend the left-hand
sides of rules—more precisely in Corollary 5.4 we use

S = FC(R) ∪ FC(R−1)−1

90

5.3 Heuristics

Example 5.13 (Cop #47). Consider the TRS R due to Klop [52] consisting
of the three rules

f(x, x)→ a g(x)→ f(x, g(x)) c→ g(c)

Because of the rewrite sequence

c→ g(c)→ f(c, g(c))→ f(g(c), g(c))→ a

we also have c→ g(c)→∗ g(a) and since a and g(a) are not joinable, which can
be shown using tree automata techniques [27], R is not confluent. However,
finding this conversion is non-trivial and indeed ACP 0.51, CoLL-Saigawa 1.1, and
CSI without redundant rules fail. Using forward closures to derive redundant
rules we find

c→ f(c, g(c)) ∈ FC(R) c→ a ∈ FC3(R)
c→ f(g(c), g(c)) ∈ FC2(R) c→ g(a) ∈ FC4(R)

and hence a←⋊→ g(a) ∈ CP(FC4(R)).

To see why including FC(R−1)−1 is beneficial, consider the following example.

Example 5.14 (Cop #46). The TRS consisting of the rules

f(x, x)→ a f(x, g(x))→ b c→ g(c)

due to Huet [45] is not confluent because

a← f(c, c)→ f(c, g(c))→ b

is a peak connecting two distinct normal forms. There is an overlap between
f(c, c) → b ∈ FC(R−1)−1 and f(x, x) → a ∈ R, resulting in the critical pair
a←⋊→ b. Note that considering FC(R) alone does not yield any progress in
this example.

Deleting Rules (del) For removing rules we search for rules whose left- and
right-hand sides are joinable, i.e., in Corollary 5.7 set

S = {ℓ→ r | ℓ ↓R r}

91

Chapter 5 Redundant Rules

This decision is motivated by simplicity of implementation and the fact that
for confluent TRSs, joinability and convertibility coincide. Removing rules can
benefit confluence proofs by eliminating critical pairs. Since our strategy here
is a simple greedy one that removes as many rules as possible, we also lose
confluence in some cases.

In the case of adding rules we also discard rules that can be simulated by
other rules in a single step. Without this refinement, the gain in power would
become smaller, and even disappear for CSI’s full strategy.

We also implemented and tested three other strategies, which did not yield
any additional proofs:

• Inspired by Example 5.1 we tried to add rules specifically for making
rewrite systems (almost) development closed. That is, we used

S = {s→ t | s←⋊→ t with s→∗
R t and not s −→○ R t}

in Corollary 5.4. All examples gained by this strategy can also be handled
by (js) or (rhs).

• To help with systems containing AC-like rules we tried to add inverted
reversible rules, by setting

S = {r → ℓ | ℓ→ r ∈ R with r →∗
R ℓ}

in Corollary 5.4. Again we gained no additional proofs compared to (js)
and (rhs).

• When removing rules we also tried to search for conversions that are not
valleys, by using rules in the reverse direction when searching for a join.
More precisely, we tried

S = {ℓ→ r | ℓ ↓R ∪ R−1 r}

in Corollary 5.7, but this variation only lost examples compared to (del).

5.4 Summary
In this chapter we demonstrated how a very simple technique, namely adding
and removing redundant rules, can boost the power of automated confluence

92

5.4 Summary

provers. It is easy to implement and we believe that also confluence tools other
than CSI could benefit from such transformations, not only increasing their
power, but also simplifying the generated proofs. Moreover the technique is
well-suited for certification, resulting in more trustworthy proofs. Interestingly
we observed that most of the systems gained by (del), see also Section 8.3,
become orthogonal by removing redundant rules. This might be due to the
fact that when designing example TRSs for new techniques, one often works
by systematically making existing criteria non-applicable and removing rules
can undo this effort.

93

Chapter 6

Confluence of the Lambda Calculus
A man provided with paper, pencil, and rubber,

and subject to strict discipline,
is in effect a universal machine.

Alan Turing

In the previous chapters we were concerned with certifiable confluence analysis
for first-order rewriting. Now we turn our attention to higher-order formalisms.
Before discussing automatable techniques for proving confluence of higher-order
rewrite systems in the next chapter, we stay in the realm of formalization and
discuss a formalized confluence proof for the quintessential higher-order rewrite
system: the λ-calculus. Anticipating future work, the presented formalization
could serve as the basis for formalizing results for higher-order rewriting.

In this chapter we give a short proof of the Church-Rosser property for
the λ-calculus enjoying two distinguishing features: firstly, it employs the
Z-property, resulting in a short and elegant proof; and secondly, it is formalized
in the nominal higher-order logic available for Isabelle/HOL.

Dehornoy proved confluence for the rule of self-distributivity xyz → xz(yz)1

by means of a novel method [19], the idea being to give a map • that is
monotone with respect to →∗ and that yields for each object an upper bound
on all objects reachable from it in a single step. Later, this method was
extracted and dubbed the Z-property [20], and applied to prove confluence of
various rewrite systems, in particular the λ-calculus.

Here we present our Isabelle/HOL formalization of part of the above mentioned
work, in particular that the λ-calculus with β-reduction is confluent since
it enjoys the Z-property and that the latter property is equivalent to an
abstract version of Takahashi’s confluence method [104]. We achieve a rigorous

1Confluence of this single-rule term rewrite system is hard: presently no tool can prove it
automatically.

95

Chapter 6 Confluence of the Lambda Calculus

nominal_datatype term =
Var name
| App term term
| Abs x::name t::term binds x in t

Listing 10: Nominal λ-terms.

treatment of λ-terms modulo α-equivalence by employing Nominal Isabelle [109],
a nominal higher-order logic based on Isabelle/HOL. The formalization is
available from the archive of formal proofs [26].

6.1 Nominal Lambda Terms

In our formalization λ-terms are represented by the nominal data type shown
in Listing 10, where the annotation “binds x in t” indicates that the equality
of such abstraction terms is up to renaming of x in t, i.e., terms are modulo α
using an automatic quotient construction. For the sake of readability we
will use standard notation in the remainder of this chapter: we drop the Var
constructor and write x instead of Var x, denote application by juxtaposition,
i.e., write s t instead of App s t, and use λx. t instead of Abs x t.

Instead of using the variable convention, when defining functions on λ-terms,
we use Nominal Isabelle’s freshness constraints. A freshness constraint is
written x ♯ t and states that x does not occur in t, or equivalently, that x is
fresh for t. In principle it is always possible to rename variables in terms, or
any finitely supported structure, away from a given finite collection of variables.
In order to relieve the user of doing so by hand, Nominal Isabelle provides
infrastructure that takes care of appropriate renaming. For instance, the
following rule for performing case analysis on nominal λ-terms is generated:

∀c t P. (∀x. t = x =⇒ P t)
∧ (∀s u. t = s u =⇒ P t)
∧ (∀x s. x ♯ c ∧ t = λx. s =⇒ P t)

=⇒ P t

Here c is a freshness context that can be instantiated to any structure that
contains finitely many bound variables. Freshness constraints can then be

96

6.1 Nominal Lambda Terms

y [x := s] = (if x = y then s else y)
(t u) [x := s] = t [x := s] u [x := s]
y ♯ (x, s) =⇒ (λy. t) [x := s] = λy. t [x := s]

Listing 11: Capture-avoiding substitution in Nominal Isabelle.

used for defining nominal functions, giving rise to strong induction principles,
similar to the rule above, with which one can reason like on paper, simply
stating that bound and free variables are to be distinct, by instantiating c.

For instance, consider the definition of capture-avoiding substitution.

Definition 6.1. For terms s and t and a variable x, the capture-avoiding
substitution of s for x in t is denoted by t [x := s] and defined as follows:

t [x := s] =


s if t = x

y if t = y and y ̸= x

u [x := s] v [x := s] if t = u v

λy. u [x := s] if t = λy. u and y ̸= x and y ♯ s

The formal definition as nominal function in Isabelle is show in Listing 11,
where the last equation is only applicable when y is fresh for x and s, i.e.,
does not occur in s and is different from x. Note that on nominal terms these
equations define a total function, because the freshness constraint can always
be fulfilled by choosing an appropriate representative.

However, nominal functions do not come for free. After stating the defining
equations, one is faced with proof obligations that ensure pattern-completeness,
termination, equivariance, and well-definedness. With the help of some home-
brewed Eisbach [63] methods we were able to handle those obligations auto-
matically. We now illustrate the strong induction principle for nominal λ-terms
on the Substitution Lemma [12, Lemma 2.1.16].

Lemma 6.2. For all variables x and y and all terms s, t, and u we have

x ♯ (y, u) =⇒ t [x := s] [y := u] = t [y := u] [x := s [y := u]]

Proof. In principle the proof proceeds by induction on t. However, for the case
of λ-abstractions we additionally want the bound variable to be fresh for s, u,
x, and y. With Nominal Isabelle it is enough to indicate that the variables of

97

Chapter 6 Confluence of the Lambda Calculus

those terms should be avoided in order to obtain appropriately renamed bound
variables. We will not mention this fact again in future proofs.

• In the base case t = z for some variable z. If z = x then we have
t [x := s] [y := u] = s [y := u] and t [y := u] [x := s [y := u]] = s [y := u],
since then z ̸= y and thus z [y := u] = z. Otherwise z ̸= x. Now if z = y,
then t [x := s] [y := u] = u and t [y := u] [x := s [y := u]] = u, since x ♯ u.
If z ̸= y then both ends of the equation reduce to z and we are done.

• In case of an application, we conclude by definition and using the induction
hypothesis twice.

• Now for the interesting case. Let t = λz. v such that z ♯ (s, u, x, y). Then

(λz. v) [x := s] [y := u] = λz. v [x := s] [y := u]
= λz. v [y := u] [x := s [y := u]]
= (λz. v) [y := u] [x := s [y := u]]

The first equality holds by z ♯ (s, u, x, y), while the second follows from
the induction hypothesis. For the last step we need z ♯ (s [y := u], u, x, y),
where z ♯ s [y := u] follows from z ♯ (s, u, y) by a straightforward induction
on s.

Using substitution we can define β-reduction in the expected way.

Definition 6.3. We define a β-step inductively by the compatible closure [12,
Definition 3.1.4] of the β-rule in a nominal version:

x ♯ t
(λx. s) t →β s [x := t]

s →β t
s u →β t u

s →β t
u s →β u t

s →β t
λx. s →β λx. t

The last three rules taken together yield closure under contexts, while the
first rule employs a freshness constraint in order to define a root β-step with
the help of capture-avoiding substitution. If we would drop the freshness
constraint, the resulting induction principle would not be strong enough with
respect to avoiding capture of bound variables.

The following standard “congruence properties” will be used freely in the
remainder.

Lemma 6.4. Let x be a variable and s, s′, t, and t′ be terms.

98

6.2 The Z Property

a b

a• b•

∗

∗

(a) Z.

a

b

○

a•

○

○

(b) Triangle.

Figure 15: The Z and triangle properties.

• If s →∗
β s ′ and t →∗

β t ′ then s t →∗
β s ′ t ′

• If s →∗
β s ′ then λx. s →∗

β λx. s ′

• If s →∗
β s ′ and t →∗

β t ′ then t [x := s] →∗
β t ′ [x := s ′]

They are proved along the lines of their textbook proofs [12, Lemma 3.1.6
and Proposition 3.1.16], the first two by induction on the length of the rewrite
sequences and the last one by nominal induction on t followed by a nested
nominal induction on the definition of β-steps, using Lemma 6.2.

Moreover we will make use of the easily proved fact that β-reduction is
coherent with abstraction, i.e., steps in an abstraction must happen below that
abstraction.

Lemma 6.5. Let x be a variable and s and t be terms. If λx. s →∗
β t then

there is a term u with t = λx. u and s →∗
β u.

6.2 The Z Property
We now present the Z-property for abstract rewriting, show that it implies
confluence, and then instantiate it for the case of nominal λ-terms modulo α
equipped with β-reduction.

Definition 6.6. A binary relation → on a set A has the Z-property if there is
a map • : A→ A such that a→ b implies b→∗ a• and a• →∗ b•.

The Z-property is illustrated in Figure 15(a), which also explains the name.
If a relation → has the Z-property then it is monotone, i.e., a →∗ b implies

99

Chapter 6 Confluence of the Lambda Calculus

a• →∗ b•, which is straightforward to show by induction on the length of the
rewrite sequence from a to b.

Lemma 6.7. A relation that has the Z-property is confluent.

Proof. We show semi-confluence. Assume a→∗ c and a→ d. We show d ↓ c
by case analysis on the rewrite sequence from a to c. If it is empty there is
nothing to show. Otherwise there is a b with a →∗ b and b → c. Then by
monotonicity we have a• →∗ b•. From a → d we have d →∗ a• using the
Z-property, so in total d→∗ b•. By applying the Z-property to b→ c we also
get c→∗ b• and consequently d ↓ c as desired.

There are two natural choices for functions on λ-terms that yield the Z-
property for →β, namely the full-development function and the full-super-
development function. The former maps a term to the result of contracting all
residuals of redexes in it [12, Definition 13.2.7] and the latter also contracts
upward-created redexes [87, Section 2.4]. Here we opt for the latter, which
requires less case analysis. To define super-developments we use an auxiliary
function, namely a variant of App with built-in β-reduction at the root.

Definition 6.8. The function ·β is defined by the following equations:

x ♯ u =⇒ (λx. s ′) ·β u = s ′ [x := u]
x ·β u = x u
(s t) ·β u = s t u

Case analysis on the first argument shows that this function satisfies the
following congruence-like property.

Lemma 6.9. For all terms s, s′, t, and t′ if s →∗
β s′ and t →∗

β t′ then
s ·β t→∗

β s′ ·β t′.

Definition 6.10. The full-superdevelopment function • on λ-terms is defined
recursively as

x• = x
(λx. t)• = λx. t•

(s t)• = s• ·β t•

Note the use of ·β to contract created redexes in the third equation. The
following example illustrates the effect.

100

6.2 The Z Property

Example 6.11. Consider the rewrite sequence

(λx. x) (λy. y) z →β (λy. y) z →β z

Since applying • to the starting term yields

((λx. x) (λy. y) z)• = ((λx. x) (λy. y))• ·β z•

= ((λx. x)• ·β (λy. y)•) ·β z

= ((λx. x) ·β (λy. y)) ·β z

= (λy. y) ·β z

= z

it constitutes a full-superdevelopment. Note that it is not a development
because the redex (λy. y) z is not present in the starting term of the reduction,
but created by the first step.2

Below, we freely use the fact that s• t• →=
β (s t)•, which is shown by

considering whether or not s• is an abstraction.
The structure of the proof that →β has the Z-property proceeds via two

auxiliary results: the first expresses that each term self-expands to its full-
superdevelopment, and the latter that applying • to the right-hand side of the
β-rule, i.e., to the result of a substitution, “does more” than applying the map
to its components first. Both are proved by structural induction.

Lemma 6.12. For all terms t we have t →∗
β t•.

Proof. By induction on t.

• If t = x then t• = x and trivially x→∗
β x.

• If t = λx. s then t• = λx. s•. Since s→∗
β s• by the induction hypothesis

we also have λx. s→∗
β λx. s•.

• If t = t1 t2 then we have t1 t2 →∗
β t•

1 t•
2 by the induction hypothesis.

If t•
1 is not an abstraction then t• = t•

1 ·β t•
2 = t•

1 t•
2 and we are done.

2Like developments, superdevelopments are finite [87]. In particular the rewrite sequence
Ω→β Ω→β Ω for Ω = (λx. x x)(λx. x x) is not a superdevelopment, because the redex in
the second step was not upward-created.

101

Chapter 6 Confluence of the Lambda Calculus

Otherwise t•
1 = λx. s for some variable x and term s and we conclude by

t = t1 t2

→∗
β (λx. s) t•

2

→β s [x := t•
2]

= (λx. s) ·β t•
2

= t•

Lemma 6.13. We have t• [x := s•] →∗
β t [x := s]• for all terms s, t and all

variables x.

Proof. We perform induction on t. The cases t = x and t = λy. t′ are straight-
forward. If t = t1 t2 we continue by case analysis on t•

1.

• If t•
1 = λy. u, then λy. u [x := s•] = t•

1 [x := s•] →∗
β t1 [x := s]• by the

induction hypothesis. Then, using Lemma 6.5, we obtain a term v such
that t1 [x := s]• = λy. v and u [x := s•]→∗

β v. We then have

(t1 t2)• [x := s•] = u [y := t•
2] [x := s•]

= u [x := s•] [y := t•
2 [x := s•]]

= v [y := t•
2 [x := s•]]

→∗
β v [y := t2 [x := s]•]

using Lemma 6.2 in the second, u [x := s•] →∗
β v in the third, and

the induction hypothesis for t2 in the final step. Since we also have
(t1 t2) [x := s]• = (t1 [x := s] t2 [x := s])• = v [y := t2 [x := s]•] we
conclude this case.

• If t•
1 is not an abstraction, then from the induction hypothesis we have

(t1 t2)• [x := s•] = t•
1 [x := s•] t•

2 [x := s•]
→∗

β t1 [x := s]• t2 [x := s]•

→=
β (t1 t2) [x := s]•

Lemma 6.14. The full-superdevelopment function • yields the Z-property for
→β, i.e., if s→β t then t→∗

β s• and s• →∗
β t• for all terms s and t.

102

6.3 The Triangle Property

Proof. Assume s→β t. We continue by induction on the derivation of →β.

• If s →β t is a root step then s = (λx. s′) t′ and t = s′ [x := t′] for
some s′ and t′. Consequently s• = s′• [x := t′•] and thus t→∗

β s• using
Lemma 6.12 twice, and s• →∗

β t• by Lemma 6.13.

• In case the step happens below an abstraction write s = λx. s′, t = λx. t′,
and s′ →β t′. The induction hypothesis yields t′ →∗

β s′• →∗
β t′• and hence

λx. t′ →∗
β λx. s′• = (λx. s′)• and λx. s′• →∗

β λx. t′• = (λx. t′)•.

• If the step happens in the left argument of an application then s = s′ u
and t = t′ u. From the induction hypothesis and Lemma 6.12 we have
t′ u →∗

β s′• u• →=
β (s u)•. That also (s′ u)• →∗

β (t′ u)• follows directly
from the induction hypothesis.

• The case where the step happens in the right argument of an application
is symmetric.

6.3 The Triangle Property
The Z-property is also closely related to the triangle property. In [104] conflu-
ence for the β-rule of the λ-calculus was proved by a method the novel idea of
which was to define a function • that maps a given λ-term t to the result of a
full development, i.e., of contracting all its redexes, and to show that any, not
necessarily full, development from t can be extended by another development
to t•. This property is known as the triangle property.

Definition 6.15. A binary relation → on A has the triangle property for a
map • : A → A, and binary relation −→○ on A, if → ⊆ −→○ ⊆ →∗ and a −→○ b
implies b −→○ a•.

Sometimes the additional condition a −→○ a• is imposed which completes the
triangle as shown in Figure 15(b) and explains the name.

Lemma 6.16. A relation → has the Z-property for • if and only if it has the
triangle property for • and some relation −→○ .

Proof. First assume that → has the triangle property for • and −→○ . To show
that → has the Z-property assume a→ b. Then by assumption we also have

103

Chapter 6 Confluence of the Lambda Calculus

a −→○ b and hence b −→○ a• and a• −→○ b•, by applying the triangle property twice,
which together with −→○ ⊆ →∗ yields the Z-property.

Now assume → has the Z-property for •. We define the •-development
relation as a −→○ b if a→∗ b and b→∗ a•. Then → ⊆ −→○ ⊆ →∗ follows from the
definition of −→○ and the Z-property. The triangle itself directly follows from
the definition of −→○ and monotonicity of •.

The relation −→○ defined in the above proof is interesting in its own right.
It allows for a syntax-free definition of development relative to any given
•-function: a reduces to b by a •-development if b is between a and a•. Note
that the classic (super)development relation in the λ-calculus is a restriction
of the syntax-freely defined −→○ via the full-(super)development map as •. That
s −→○ t whenever s reduces to t by a (super)development is easy to see. However
the reverse does not hold.

Example 6.17. Let I = λx. x and s = (λy. I) ((λx.xx) I). We have

s→∗
β (λy. I) I →∗

β I = s•

and hence s −→○ (λy. I) I but there is no (super)development from s to (λy. I) I.

6.4 Assessment

Three well-known methods in the literature for showing confluence of the
λ-calculus are:

(a) Complete developments have the diamond property, due to Tait and
Martin–Löf [12, Section 3.2].

(b) Complete developments have the triangle property with respect to the
full-development function, due to Takahashi [104].

(c) Full-developments have the Z-property, due to Dehornoy and van Oost-
rom [20].

Our proof varies on this picture along yet another dimension, replacing develop-
ments (due to Church and Rosser, cf. [12, Definition 11.2.11]) by superdevelop-
ments (due to Aczel, cf. [87, Section 2.7]). Where full-developments give a “tight”

104

6.4 Assessment

upper bound on the single-step reducts of a given term, full-superdevelopments
do not.

Formalizing confluence of the λ-calculus has a long history, for which we
refer to Section 9.1. Here we compare our formalization in Isabelle to two
others, Nipkow’s formalization in Isabelle/HOL [73], as currently distributed
with Isabelle, and Urban and Arnaud’s formalization in Nominal Isabelle.3
There are two major differences of the present proof to Nipkow’s formalization.
On the one hand Nipkow uses de Brujin indices to represent λ-terms. This
considerably increases the size of the formal theories – almost 200 lines of the
roughly 550 line development are devoted to setting up terms and the required
manipulations on indices. Our development is 300 lines (60 of which are used
for our ad hoc Eisbach methods). Of course the complexity of α-equivalence
is delegated to Nominal Isabelle in our proof. The second difference is the
actual technique used to show confluence: Nipkow proceeds by establishing the
diamond property for complete developments. Urban and Arnaud establish the
triangle property for multisteps with respect to the full-development function.
The use of an auxiliary rewrite relation results in a 100 line increase compared
to our formalization, which only needs the • function.

3https://nms.kcl.ac.uk/christian.urban/Nominal/download.html

105

https://nms.kcl.ac.uk/christian.urban/Nominal/download.html

Chapter 7

Confluence of Higher-Order Rewriting
Sometimes, the elegant implementation is just a function.

Not a method. Not a class. Not a framework.
Just a function.

John Carmack

We now turn to confluence of higher-order (pattern) rewrite systems (PRSs)
as introduced in Section 2.5. Intuitively due to their restricted left-hand sides
PRSs behave mostly like TRSs for confluence. However, the presence of bound
and functional variables leads to several subtle differences and effects. For
instance, the possibility of nesting variables in right-hand sides of rules breaks
the desired properties of parallel reduction.

In the remainder of this chapter we describe the confluence criteria imple-
mented in our tool CSÎ ho. Starting from critical pairs and a higher-order
critical pair lemma due to Nipkow [70] we first show how confluence of ter-
minating PRSs is decidable, like in the first-order setting. Here the main
difficulties are dealing with bound variables in the definition of critical pairs
and computing them via higher-order unification. For possibly non-terminating
systems we discuss two more classical criteria, orthogonality and development
closed critical pairs. Finally we investigate modularity of confluence for PRSs
and a higher-order version of the redundant rules technique from Chapter 5.

7.1 Higher-Order Critical Pairs
To formulate confluence criteria for PRSs we first need a suitable notion of
critical pair. To define critical pairs in the presence of λ we need to deal with
bound variables becoming free, when taking a subterm of a rule in the critical
pair computation. To rebind those variables and at the same time rename
rules apart the following auxiliary definition is used.

107

Chapter 7 Confluence of Higher-Order Rewriting

Definition 7.1. An xk-lifter of a term t away from a set of variables V is a
substitution σ = {F 7→ ρ(F)(xk) | F ∈ fv(t)} where ρ is a injective mapping
from V to V with ρ(F) ̸= F , ρ(F) /∈ V , and ρ(F) : τ1 → · · · → τk → τ for
x1 : τ1, . . . xk : τk and F : τ , for all F ∈ fv(t).

For example, consider the function symbol h : (o → o) → o → o and the
variables F : o → o, G : o, J : o, x : o, and y : o. Then the substitution
σ = {F 7→ H(y), G 7→ I(y)} is a y-lifter of h(λx. F (x), G) away from {F, J}
for variables H : o→ o→ o and I : o→ o, and mapping ρ(F) = H, ρ(G) = I.

We collect the bound variables along a position p in a term t in bv(t, p), i.e.,
bv(t, ϵ) = ∅, bv(a(t1, . . . , tn), ip) = bv(ti, p), and bv(λx. t, 1p) = {x} ∪ bv(t, p).

Definition 7.2. Let ℓ1 → r1 and ℓ2 → r2 be rewrite rules in a PRS R with
fv(ℓ1) ∩ bv(ℓ1) = ∅, p a position in Pos(ℓ1) such that tp(ℓ1|p) /∈ fv(ℓ1). Let
{xk} = bv(ℓ1, p) and let σ be an xk-lifter of ℓ2 away from fv(ℓ1). If λxk. (ℓ1|p)
and λxk. (ℓ2σ) are unifiable with mgu µ, then ℓ1 and ℓ2 overlap and give rise
to the critical pair ℓ1µ[r2σµ]p ←⋊→ r1µ.

Example 7.3. Consider the signature consisting of the function symbols
f : o → o → o and g : (o → o) → o, the variables F : o, G : o → o, and
x : o, and the PRS consisting of the two rewrite rules g(λx. f(F, x))→ F and
f(g(λx. G(x)), F) → F . Then for p = 11 we have g(λx. f(F, x))|p = f(F, x)
and bv(g(λx. f(F, x)), p) = {x}. The substitution σ = {F 7→ H(x)} is an
x-lifter of f(g(λx. G(x)), F) away from {F}. Moreover we have that λx. f(F, x)
and λx. (f(g(λx. G(x)), F))σ = λx. f(g(λx. G(x)), H(x)) are unifiable with
unifier µ = {F 7→ g(λx. G(x)), H 7→ λy. y}. Thus we obtain the critical pair
g(λx. x) = g(λx. Fσµ)←⋊→ g(λx. G(x)).

The next lemma states that critical pairs capture peaks as desired.

Lemma 7.4. Let R be a PRS and let s←⋊→ t be a critical pair of R. Then
there is a term u with s R← u→R t.

Proof. From the definition of critical pair we obtain rewrite rules ℓ1 → r1
and ℓ2 → r2, a position p and substitutions σ and µ with t = r1µ and
s = ℓ1µ[r2σµ]p. Define u = ℓ1µ. Then u → r1µ = t is trivial. We also
have λxk. (ℓ1|p)µ = (λxk. (ℓ1|p))µ = (λxk. (ℓ2σ))µ = λxk. (ℓ2σ)µ and thus
ℓ1|pµ = ℓ2σµ. Moreover since ℓ1|p is a pattern and tp(ℓ1|p) /∈ fv(ℓ1) we also
have ℓ1µ|p = ℓ2σµ. So in total u = ℓ1µ = ℓ1µ[ℓ2σµ]p → ℓ1µ[r2σµ]p = s.

108

7.1 Higher-Order Critical Pairs

Using this notion of critical pair we can state a higher-order version of the
critical pair lemma.

Lemma 7.5 (Nipkow [70]). A PRS R is locally confluent if and only if s ↓R t
for all critical pairs s←⋊→ t of R.

Proof Sketch. The proof structure is essentially the same as in the first-order
setting: in a local peak analyze the positions of the two rewrite steps. If they
are overlapping there is a critical pair, which is joinable by assumption. If they
are not overlapping then they are either parallel or one step takes place in the
substitution of the other. In both cases a common reduct can be constructed,
see [64] for a detailed account.

Example 7.6. Consider the PRS R for the map function from Example 2.50.
Since R does not give rise to any critical pairs it is locally confluent.

Example 7.7 (Cop #426). The untyped lambda calculus with β- and η-
reduction can be encoded as a PRS as follows:

abs : (term→ term)→ term app : term→ term→ term
app(abs(λx. M(x)), N)→M(N) abs(λx. app(N, x))→ N

There are two critical pairs:

abs(λx. M(x))←⋊→ abs(λx. M(x)) app(M, N)←⋊→ app(M, N)

Since they are trivially joinable we conclude local confluence.

Combining the critical pair lemma with Newman’s Lemma yields a confluence
criterion for PRSs.

Corollary 7.8. A terminating PRS R is confluent if and only if s ↓R t for
all critical pairs s←⋊→ t of R.

To make use of this criterion we need a repertoire of termination criteria.
The ones supported by CSÎ ho are sketched in the next section.

109

Chapter 7 Confluence of Higher-Order Rewriting

7.2 Termination
CSÎ ho uses a basic higher-order recursive path order [88] and static dependency
pairs with dependency graph decomposition and the subterm criterion [59].
Alternatively, one can also use an external termination tool like WANDA [55]
as an oracle. This section gives a brief account of these three techniques.

The main ingredient of a recursive path order is a well-founded order on
the function symbols, which is then lifted to a well-founded rewrite order ≻
on the set of terms. Hence a rewrite system is terminating if ℓ ≻ r for all
ℓ→ r. Defining such orders for HRSs is problematic since terms are modulo
β. The issue is that a relation that is closed under contexts cannot be well-
founded. To see this suppose ≻ is closed under contexts and assume b ≻ c.
Then we have (λx. a) · b ≻ (λx. a) · c using closure under contexts, but also
((λx. a) · b) ↕ηβ = a = ((λx. a) · c) ↕ηβ and hence a ≻ a. One solution is to
define an order on pre-terms in η-long form, and then use ≻ · →∗

β to show
termination. This approach is taken in [88] and used in CSÎ ho. We briefly
show the definition and sketch its use.

First note that an η-long pre-term is of the form λx1 . . . xn. s0(s1, . . . , sn)
where s0(s1, . . . , sn) is of base type and si is in η-long form for all 1 ⩽ i ⩽ n.
Tailoring an order to the structure of pre-terms yields the following definition.

Definition 7.9. Assume a well-founded order on function symbols >F and
a partitioning of F into two disjoint sets Fmul and Flex. The higher-order
recursive path order (HORPO) is defined as follows: we have s ≻ t for pre-
terms s : σ and t : τ in η-long form if σ = τ after collapsing all base types and
one of the following clauses holds:

(H1) s = f(s1, . . . , sn),
si ⪰ t for some i ∈ {1, . . . , n}

(H2) s = f(s1, . . . , sn), t = g(t1, . . . , tm),
s ≻≻ {t1, . . . , tm} and f >F g

(H3Lex) s = f(s1, . . . , sn), t = f(t1, . . . , tn), f ∈ Flex,

s ≻≻ {t1, . . . , tn} and there is an i ∈ {1, . . . , n} with
si ≻ ti and sj = tj for all 1 ⩽ j < i

(H3Mul) s = f(s1, . . . , sn), t = f(t1, . . . , tn), f ∈ Fmul,

{s1, . . . , sn} ≻mul {t1, . . . , tn}

110

7.2 Termination

(H4) s = f(s1, . . . , sn), t = t0(t1, . . . , tm)
s ≻≻ {t0, . . . , tm}

(H5) s = x(s1, . . . , sn), t = x(t1, . . . , tn)
si ≻ ti for some i ∈ {1, . . . , n} and si ⪰ ti for all i ∈ {1, . . . , n}

(H6) s = s0(s1, . . . , sn), t = t0(t1, . . . , tn)
si ≻ ti for some i ∈ {0, . . . , n} and si ⪰ ti for all i ∈ {0, . . . , n}

(H7) s = λx. s1, t = λx. t1,

s1 ≻ t1

Here ⪰ denotes the reflexive closure of ≻ and the relation ≻≻ is defined as
follows: s = f(s1, . . . , sn) ≻≻ {t1, . . . , tm} if for all i ∈ {1, . . . , m} either s ≻ ti

or sj ⪰ ti for some j ∈ {1, . . . , n}.

Termination can then be shown using the following result.

Theorem 7.10 (van Raamsdonk [88]). A PRS R is terminating if for all
ℓ→ r ∈ R there is a pre-term r′ such that ℓ ≻ r′ →∗

β r.

Example 7.11. We continue Example 7.6. The PRS for the map function can
be shown terminating using HORPO: We have map(λx. F (x), nil) ≻ nil by (H1)
for the first rule. For the second rule we use an intermediate pre-term, showing
map(λx. F (x), cons(h, t)) ≻ cons((λx. F (x)) h, map(λx. F (x), t)). This suffices
because then we can conclude by cons((λx. F (x)) h, map(λx. F (x), t)) →∗

β

cons(F (h), map(λx. F (x), t)). Using (H2) yields map >F cons and we are left
to prove map(λx. F (x), cons(h, t)) ≻≻ {(λx. F (x)) h, map(λx. F (x), t)}. We
get map(λx. F (x), cons(h, t)) ≻ (λx. F (x)) h by (H4) and (H1). To obtain
map(λx. F (x), cons(h, t)) ≻ map(λx. F (x), t) we assume map ∈ Fmul, apply
(H3Mul)1 and are left to show {λx. F (x), cons(h, t)} ≻mul {λx. F (x), t}, which
we get using (H1). In total we obtain confluence by Corollary 7.8.

The intuition behind the dependency pair approach, originally due to Arts
and Giesl [10] for first-order TRSs, is to identify those parts of right-hand sides of
rules that may give rise to a non-terminating rewrite sequence—one may think of
it as analyzing the recursive calls. It is however not obvious how the dependency
pair approach can be brought into a higher-order setting. The variants that
emerged can be roughly split into the dynamic approach [56,94], which admits

1Choosing map ∈ Flex and applying (H3Lex) would also work.

111

Chapter 7 Confluence of Higher-Order Rewriting

dependency pairs headed by functional variables, but avoids bound variables
becoming free, while the static approach [59, 92, 102] only considers defined
symbols, but bound variables might be freed. CSÎ ho implements the static
approach. Below we illustrate the technique on an example and refer to the
literature for definitions and proofs. Static dependency pairs are defined just
like in the first-order case: the signature is extended by marked versions
of all functions symbols and left-hand sides of rules together with subterms
headed by defined symbols of the corresponding right-hand side are collected
as dependency pairs.

Example 7.12. Consider the following PRS R modeling fold right. The
signature consists of

nil : natlist
cons : nat→ natlist→ natlist
foldr : (nat→ nat→ nat)→ nat→ natlist→ nat

We have two rules in R

foldr(λx y. F (x, y), z, nil)→ z

foldr(λx y. F (x, y), z, cons(h, t))→ F (h, foldr(λx y. F (x, y), z, t))

which give rise to one dependency pair:

foldr#(λx y. F (x, y), z, cons(h, t))→ foldr#(λx y. F (x, y), z, t)

Since the static dependency pair method does not give rise to dependency
pairs headed by functional variables, it is only applicable to systems where
they occur in a harmless fashion. This class of systems is called plain-function
passing and was first introduced for Simply Typed Term Rewriting Systems [60]
and later extended to HRSs [59]. Intuitively plain function-passing means that
free higher-order variables on the left-hand side of a rule are directly passed to
the right-hand side. The PRS in Example 7.12 is plain-function passing, we
refer to the literature for details.

Dependency pairs are commonly organized in the so-called dependency
graph, which captures the idea that, since, for a finite system, there are only
finitely many dependency pairs, in an infinite dependency chain at least one
of them has to occur infinitely often. Attention can then be restricted to

112

7.2 Termination

the strongly connected components of this graph, which can be solved in an
iterative fashion. Here one can use an order like HORPO, possibly enhanced by
techniques like argument filterings and usable rules [102]. CSÎ ho additionally
supports the subterm criterion, originally due to Hirokawa and Middeldorp [40].
Roughly speaking, the subterm criterion permits one to delete dependency
pairs, where after projecting dependency pair symbols to one of their arguments
the right-hand side becomes a subterm of the left-hand side.
Example 7.13. Continuing Example 7.12 we find that by projecting foldr#

to its third argument we obtain cons(h, t)▷ t. Hence the only dependency pair
can be removed by the subterm criterion and R is terminating. Since it does
not admit any critical pairs, it is confluent by Corollary 7.8.

The termination criteria described thus far are part of CSÎ ho mainly so
that it can be used as a standalone tool. They are subsumed by the tech-
niques implemented in modern, dedicated higher-order termination tools like
WANDA [55]. A transformation from PRSs to algebraic functional systems
with meta-variables (AFSMs), the flavor of higher-order rewriting used in
WANDA, is implemented in CSÎ ho to make WANDA usable as an external
oracle. AFSMs are simply typed, use both application as in the λ-calculus and
function construction as in first-order rewriting, and have meta-variables for
matching, which are variables that take arguments and come with a fixed arity.
AFSMs were designed as an encompassing formalism that captures concepts
from many other higher-order formalisms, see [55] for details.
Definition 7.14. For any simple type σ = σ1 → · · · → σn → ι, define a type
declaration σ′ = [σ1 × · · · × σn] → ι. Given a PRS R and a signature F let
F ′ = {f ′ : σ′ | f : σ ∈ F} and choose for all variables x : σ that occur as free
variables in some rule of R a corresponding meta-variable Zx : σ′. For a set of
variables V define the function φV , which transforms PRS terms into AFSM
meta-terms as follows:

φV (λx. s) = λx. φV (s)
φV (f s1 · · · sn) = f ′(φV (s1), . . . , φV (sn)) if f ∈ F
φV (x s1 · · · sn) = x (φV (s1), . . . , φV (sn)) if x ∈ V \ V

φV (x y1 ↑η · · · yn ↑η) = Zx(y1, . . . , yn) if x ∈ V , y1, . . . , yn ∈ V \ V

φV (x s1 · · · sn) = Zx(φV (s1), . . . , φV (sn)) if x ∈ V , otherwise

Define R′ = {φfv(ℓ)(ℓ)→ φfv(ℓ)(r) | ℓ→ r ∈ R}.

113

Chapter 7 Confluence of Higher-Order Rewriting

This definition can be used to show termination of a PRS via the following
theorem.

Theorem 7.15 (Kop [55]). A PRS R over signature F is terminating if the
AFSM R′ is terminating over signature F ′.

Note that although AFSMs do allow for an application operator, transforming
an application with variable left-hand side into a meta-variable of appropriate
arity is essential.

Example 7.16 (Cop #764). Consider the PRS R consisting of the following
four rules:

f(λx y. F x)→ b b→ f(λx y. a)
f(λx y. a)→ d b→ c

This system is locally confluent because its four critical pairs

b←⋊→ d f(λx y. a)←⋊→ c
d←⋊→ b c←⋊→ f(λx y. a)

are joinable. Note that there is a step f(λx y. a) →R b using the first rule,
because (f(λx y. F x){F 7→ λz. a}) ↓β = f(λx y. a). This also directly yields
non-termination, because the first two rules form a loop. Indeed the system is
not confluent because of the non-joinable peak

d← f(λx y. a)→ b→ c

Using the translation φ from Definition 7.14 non-termination is reflected: we
have φ{F }(f(λx y. F x)) = f ′(λx y. F ′(x)) for a unary meta-variable F ′ and
f ′(λx y. F ′(x)) does match f ′(λx y. a′) in an AFSM. Keeping the application
as e.g. f ′(λx y. F ′′ x) for a nullary F ′′, it would not match and one might
mistakenly conclude termination and confluence.

7.3 Orthogonality
We now turn to non-terminating systems. Again classic criteria from the
first-order setting apply, after some complications.

114

7.3 Orthogonality

Definition 7.17. A left-linear PRS is orthogonal if admits no critical pairs.
It is weakly orthogonal if s = t for all its critical pairs s←⋊→ t.

The PRS for map from Example 2.50 is orthogonal, the untyped lambda
calculus as represented in Example 7.7 is weakly orthogonal. Compared to
the first-order setting, the additional complexity is due to the possibility that
residuals of a redex might be nested. Hence using parallel rewriting, like we
did in Chapter 3 does not work, i.e., −→∥ does not have the diamond property
for orthogonal HRSs.

Example 7.18. Consider the HRS defined by the two rules

f(λx. Z(x))→ Z(Z(a)) g(x)→ h(x)

Assuming a relation −→∥ for HRSs that contracts a set of parallel redexes in
one go we have: f(λx. g(x)) −→∥ g(g(a)) and f(λx. g(x)) −→∥ f(λx. h(x)) using the
first and second rule respectively. Since the only terms reachable from g(g(a))
using −→∥ are h(g(a)) and g(h(a)), and the only term reachable from f(λx. h(x))
is h(h(a)), the diamond property does not hold.

The obvious solution is to use multisteps, to also allow contracting nested
redex in a single step. Standard proofs then proceed by showing the diamond
property or the triangle property of −→○ .

Corollary 7.19 (Nipkow [72]). Orthogonal PRSs are confluent.

As in the first-order setting orthogonality can be relaxed to allow trivial
critical pairs. Here we just state the result and refer to the literature for the
(standard) proof.

Theorem 7.20 (van Oostrom and van Raamsdonk [81]). Weakly orthogonal
PRSs are confluent.

This result was further extended by van Oostrom to allow for non-trivial
critical pairs that are connected by a multistep, i.e., development closed PRSs.

Theorem 7.21 (van Oostrom [78]). A left-linear PRS R is confluent if s −→○ t
for all critical pairs s←⋊→ t of R.

115

Chapter 7 Confluence of Higher-Order Rewriting

Example 7.22 (Cop #458). Consider the PRS for the untyped lambda
calculus from Example 7.7. If we add an additional bottom symbol of the type
bot : term and the two rules

app(bot, M)→ bot abs(λx. bot)→ bot

we obtain two new critical pairs:

abs(λx. bot)←⋊→ bot app(bot, M)←⋊→ bot

Since both of them are development closed we conclude confluence of the
extended system by Theorem 7.21.

7.4 Modularity
As a divide-and-conquer technique CSÎ ho implements modularity, i.e., decom-
posing a PRS into parts with disjoint signatures, for left-linear PRSs. Note
that the restriction to left-linear systems is essential—unlike for the first-order
setting confluence is not modular in general. The following example illustrates
the problem.

Example 7.23 (Cop #462). Consider the PRS R from [9] consisting of the
three rules

f(x, x)→ a f(x, g(x))→ b µ(λx. Z(x))→ Z(µ(λx. Z(x)))

The first two rules and the third rule on their own are confluent, e.g. by
Corollary 7.8 and Theorem 7.20 respectively. However, because of the peak

a← f(µ(λx. g(x)), µ(λx. g(x)))→ f(µ(λx. g(x)), g(µ(λx. g(x))))→ b

R is not confluent. Note that R does not have critical pairs, making it
non-trivial to find this peak.

For left-linear systems modularity does hold. One can obtain this re-
sult as a consequence a generalization of Theorem 7.20 to two PRS. We
call two PRSs R and S weakly orthogonal with respect to each other, if
(R←⋊→S) ∪ (R←⋉→S) ⊆ =, where we use the obvious extension of critical
pairs to two PRSs, simply taking one rule from each system in Definition 7.2.

116

7.5 Redundant Rules

Theorem 7.24 (van Oostrom and van Raamsdonk [81]). Two left-linear PRSs
commute if their rules are weakly orthogonal with respect to each other.

In combination with Lemma 2.19 this result immediately yields modularity
for left-linear PRSs.

Corollary 7.25. Let R1 and R2 be confluent left-linear PRSs over two disjoint
signatures. Then R1 ∪R2 is confluent.

7.5 Redundant Rules
The technique described in Chapter 5 directly carries over to the higher-order
setting. Since rewriting is closed under contexts and substitutions the proofs
need no modification.

Example 7.26. Consider the PRS from Example 7.23. After adding the
redundant rule f(µ(λx. g(x)), µ(λx. g(x)))→ b there is a critical pair a←⋊→ b
and non-confluence is obvious.

To find new rules like the one above we again use forward closures, applying
rules in both directions. In the above example unifying Z(µ(λx. Z(x))) with
g(x) and applying the reversed third rule to the left-hand side of the second
rule yields the desired new rule. Note that since right-hand sides need not be
patterns we now deal with general higher-order unification. Otherwise imple-
menting transformations based on redundant rules for PRSs is straightforward.
One just needs to take care to only add rules that do not violate the pattern
restriction.

The following example illustrates removal of redundant rules.

Example 7.27 (Cop #465). Consider the following encoding of lambda cal-
culus with Regnier’s σ-reduction [89]:

app(abs(λx. T (x)), S)→ T (S)
app(abs(λy. abs(λx. M(y, x))), S)→ abs(λx. app(abs(λy. M(y, x)), S))

app(app(abs(λx. T (x)), S), U)→ app(abs(λx. app(T (x), U)), S)

Since the left- and right-hand side of the second and third rule are convertible
using the first rule, they can be removed and confluence of the first rule alone
can be established by Theorem 7.20.

117

Chapter 7 Confluence of Higher-Order Rewriting

7.6 Summary
In this chapter we presented generalizations of confluence criteria from term
rewriting, where all functions are first-order, to rewrite systems over typed
λ-terms. After defining critical pairs, where one needs to take care of bound
variables, we gave a critical pair lemma and discussed orthogonality and
development closed critical pairs. Here the main difference to term rewriting
is that using parallel rewriting does not work, due to nesting of redexes. As
a divide-and-conquer technique we considered modularity, which unlike for
first-order systems, is restricted to left-linear PRSs. Finally we showed how to
adapt the technique of redundant rules to the higher-order setting. The results
we discussed are the basis for the higher-order confluence prover CSÎ ho, which
we describe in the next chapter.

118

Chapter 8

CSI and CSÎ ho
Talk is cheap. Show me the code.

Linus Torvalds

The tool CSI [66,114] is a strong automated confluence prover for first-order term
rewrite systems, which has been in development since 2010 and participates
in the annual confluence competition [4]. It is built on the same framework
as the termination prover TTT2 [58], which is also developed in Innsbruck.
Consequently when proving (relative) termination is required for a confluence
criterion, a wide range of techniques is immediately available in CSI.

In this chapter we explain how to obtain and use CSI and its sibling CSÎ ho, an
extension of CSI for proving confluence of higher-order rewrite systems. More
precisely, CSÎ ho automatically checks confluence of pattern rewrite systems.
This restriction is imposed to obtain decidability of unification and thus makes
it possible to compute critical pairs. To this end CSÎ ho implements a version
of Nipkow’s functional algorithm for higher-order pattern unification [71].

We also report on some distinguishing features and implementation details
of the CSI family and assess its power in an experimental evaluation. Many
of the techniques implemented in CSI produce proofs in CPF that can be
independently verified by CeTA.

8.1 Usage

CSI is free software, licensed under the GNU LGPL. The source code, pre-
compiled binaries, and the web-interface shown in Figure 16 are available
from

http://cl-informatik.uibk.ac.at/software/csi

119

http://cl-informatik.uibk.ac.at/software/csi

Chapter 8 CSI and CSIˆho

Figure 16: The web-interface of CSI and CSÎ ho.

CSÎ ho can be obtained from

http://cl-informatik.uibk.ac.at/software/csi/ho

and accessed through the same web-interface.
CSI reads TRSs in the classic TPDB format, the format that is also used

in the Cops database. In this format the TRS from Example 3.8 for instance
reads as follows:

(VAR x y z)
(RULES

f(f(x, y), z) -> f(x, f(y, z))
f(x, y) -> f (y, x)

)

After specifying which symbols are to be treated as variables—all other symbols

120

http://cl-informatik.uibk.ac.at/software/csi/ho

8.1 Usage

are considered to be function symbols—in a VAR declaration, the actual rules
of the TRS are given using the keyword RULES.

The format for specifying PRSs for consumption by CSÎ ho follows the same
design, adding type declarations for variables and function symbols. The PRS
for the untyped lambda calculus from Example 7.7 is given by

(FUN
abs : (term -> term) -> term
app : term -> term -> term

)
(VAR

x : term
N : term
M : term -> term

)
(RULES

app(abs(\x. M x), N) -> M(N),
abs(\x. app(M, x)) -> M

)

Note that terms can be given in both applicative and algebraic notation like in
M x and M(N). Since application is denoted by juxtaposition a delimiter , is
now required between the rules to ensure the grammar is non-ambiguous. The
format itself does not require systems to be PRSs, i.e., also general HRSs can
be specified. A detailed description of the Cops formats is available at

http://coco.nue.riec.tohoku.ac.jp/problems/#format

Given a rewrite system in one of these formats using CSI or CSÎ ho via their
web-interface is easy. After entering the system, select the tool to run, and
the property to be shown and press submit. Besides the current versions of
CSI (1.1) and CSÎ ho, a configuration of CSI using only confluence criteria that
can be checked by CeTA (✓CSI) and earlier releases are available.

By default CSI shows (non-)confluence (CR). Since version 1.0 also unique
normal form properties are supported, namely UNR (every term has at most
one normal form) and UNC (every two convertible normal forms are equal).
We refer to the literature [24, 66] for details about these properties and the
corresponding implementation in CSI.

For more sophisticated use cases the full power of CSI is available through
its command line interface, which offers many settings and configurations. The
basic invocation is

121

http://coco.nue.riec.tohoku.ac.jp/problems/#format

Chapter 8 CSI and CSIˆho

$ csi [options] <file> [timeout]

For a detailed explanation of all options, in particular the proof search strategy,
one can ask CSI for help by calling it with the argument --help. Below we
describe some of the design choices that make CSI powerful, flexible, and easy
to extend.

8.2 Implementation Details
Since its first release one of CSI’s defining features has been its strategy language,
which enables the combination of techniques in a flexible manner and facilitates
integration of new criteria. The basic building blocks in this language are
processors that turn an input problem into a list of output problems that
need to be solved. From these processors complex strategies are built using
strategy combinators. Some important combinators are: sequential composition
of strategies ;, alternative composition | (which executes its second argument
if the first fails), parallel execution ||, and iteration *. A postfix n* executes a
strategy at most n times while [n] executes its argument for at most n seconds.
Finally ? applies a strategy optionally (i.e., only if it makes progress), and !
ensures that its argument only succeeds if confluence could be (dis)proved. To
illustrate its power we compare the strategy used in CSI 0.1 with the one from
CSI 1.1. The original strategy was

(KB || NOTCR || (((CLOSED || DD) | add)2*)! || sorted -order)*

where sorted -order applies order-sorted decomposition and methods written
in capitals are abbreviations for sub-strategies: KB applies Knuth-Bendix’
criterion, CLOSED tests whether the critical pairs of a TRS are strongly or
development closed, DD implements decreasing diagrams, and NOTCR tries to
establish non-confluence. The current strategy is

(if trs then (sorted -order*;
(((GROUND || KB || AC || KH || AT || SIMPLE || CPCS2 ||
(REDUNDANT_DEL?;
(CLOSED || DD || SIMPLE || KB || AC || GROUND{nono}))3*! ||

((CLOSED || DD) | REDUNDANT_RHS)3*! ||
((CLOSED || DD) | REDUNDANT_JS)3*! || fail)[30] | CPCS[5]2*)2* ||

(NOTCR | REDUNDANT_FC)3*!)
) else fail)

122

8.2 Implementation Details

which illustrates how to integrate new techniques independently or in com-
bination with others, for instance the REDUNDANT_X strategies, which are the
different heuristics for finding redundant rules described in Section 5.3. The
other criteria presented in this thesis are implemented in KB for Knuth-Bendix’
criterion, CLOSED for strongly and almost parallel closed systems, CPCS(2)
for the techniques based on critical pair closing systems, and DD for the rule
labeling.

Other additions are a decision procedure for ground systems [21] (GROUND),
criteria by Klein and Hirokawa [51] (KH) and by Aoto and Toyama [6] (AT),
simple to test syntactic criteria by Sakai, Oyamaguchi, and Ogawa [93], and
Toyama and Oyamaguchi [108] (SIMPLE), and a version of the AC critical pair
lemma based on extended rules [84] (AC). The full strategy configuration grew
from 76 to 233 lines since the initial release.

We remark that the price one pays for flexibility is the possibility for subtle
errors. Note for instance the obscure-looking modifier {nono} applied to
GROUND in the fourth line. This modifier ensures that the strategy it is applied
to only succeeds if it shows confluence (and fails if it would have shown non-
confluence). The modifier is necessary here, because this invocation of GROUND
appears below REDUNDANT_DEL, which is the strategy that removes rules if their
left- and right-hand sides are joinable using other rules, see Section 5.3. Since
that transformation only reflects confluence, a potential non-confluence proof
by the decision procedure implemented in GROUND needs to be discarded at
that point.

Based on the same framework, CSÎ ho inherits the strategy language and is
configured the same way. Its strategy for proving confluence of PRSs is

(if prs then ((if left-linear -ho then homodular else fail)?; (
(NOTCR | REDUNDANT_FC)3*! ||
(REDUNDANT_DEL?;(CLOSED || KB_W))3*! ||
(CLOSED | REDUNDANT_RHS)3*! || (CLOSED | REDUNDANT_JS)3*!

)) else fail)

This strategy first checks whether the input is a pattern system, and if not gives
up straight away. Otherwise, if the system is left-linear, it is decomposed based
on modularity as described in Section 7.4. The critical pair lemma together
with the termination criteria described in Section 7.2, including a call to the
external tool WANDA, is implemented in KB_W. As in CSI’s configuration, NOTCR
proves non-confluence, CLOSED tests for orthogonality and development closed

123

Chapter 8 CSI and CSIˆho

critical pairs, and REDUNDANT_X are the heuristics for adding and removing
redundant rules.

8.3 Experimental Results

In this section we compare the confluence criteria described in the previous
chapters, CSI’s certified and full strategies, and the contestants of CoCo, via
an experimental evaluation.

The experiments were carried out on a 64 bit GNU/Linux machine with an
Intel® Core™ i7-5930K CPU, consisting of six cores clocked at 3.50 GHz with
hyper-threading, and 32 GiB of memory.

8.3.1 Term Rewrite Systems

For the first-order setting we considered all 437 TRSs in the Cops database,
version 764. For presenting the results we proceed in a top-down manner and
first compare all participants of the first-order track of CoCo. Afterwards
we will take a closer look at CSI, in particular the certifiable criteria from
Chapters 3 and 4, the gain in power due to the redundant rules technique from
Chapter 5, and the gap between CSI’s certified and full strategies.

The results for the contestants of CoCo 2017 are shown in Table 1. Besides
CSI 1.1, ACP 0.511 and CoLL-Saigawa 1.12 competed. A check-mark ✓ indicates
that the tools certified strategy was used, i.e., the tool produces a proof in CPF,
which is certified using CeTA. Figure 17 shows the examples solved by the provers
in relation to each other. Here we omit the certifiable configurations: the
examples solved by ✓CSI are a subset of those solved by CSI, while surprisingly
✓ACP proves non-confluence of two systems (Cops #654 and #680) for ACP
answers MAYBE. For the 31 systems that CSI cannot handle, its main weakness is
lack of special support for non-left-linear rules. Here for instance criteria based
on quasi-linearity [7] and implemented in ACP are missing in CSI’s repertoire.
Of those 31 systems 16 are currently out of reach for all automatic confluence
tools, like self-distributivity or extensions of combinatory logic.

While all non-confluence proofs produced by CSI are certifiable there is still a
gap in confluence analysis. The main missing techniques are a criterion to deal

1http://www.nue.riec.tohoku.ac.jp/tools/acp/
2http://www.jaist.ac.jp/project/saigawa/

124

http://www.nue.riec.tohoku.ac.jp/tools/acp/
http://www.jaist.ac.jp/project/saigawa/

8.3 Experimental Results

ACP ✓ACP CoLL-Saigawa CSI ✓CSI

yes 225 53 142 244 148
no 155 124 99 162 162
maybe 57 260 196 31 127

Table 1: Comparison of CoCo 2017 participants.

229

37

1
014

8132

16

CSI

ACP CoLL-Saigawa

Figure 17: Overlap between solved examples for CoCo 2017 participants.

with AC rules, e.g. one based on the critical pair lemma, or the one by Aoto and
Toyama [6], advanced decomposition techniques based on layer systems [25],
and techniques for dealing with non-left-linear systems, in particular the criteria
by Klein and Hirokawa [51] and by Sakai, Oyamaguchi, and Ogawa [93].

We now take a closer look at CSI’s certifiable confluence criteria in comparison
to each other. Table 2 shows the results of running CSI with different strategies
that apply the direct methods described in Chapters 3 and 4. The first
three columns show the results for applying just Knuth-Bendix’ criterion,
Corollary 3.7 and Corollary 3.23. The number of confluence proofs obtained
by using critical-pair-closing systems as in Section 3.5 is shown in the fourth
column. Applying the rule labeling, i.e., Lemma 4.17(e) for linear TRSs and
Theorem 4.6 for left-linear TRSs, yields the results in the fifth and sixth
columns. The last two columns show CSI’s non-confluence methods and
the combination of all listed criteria. A more detailed story for our main
contributions on certification is told in Figure 18. It shows the systems solved

125

Chapter 8 CSI and CSIˆho

KB SC PC CPCS RL-L RL-LL NOTCR Σ
yes 40 57 39 62 78 83 0 106
no 0 0 0 0 0 0 154 154
maybe 397 380 398 375 359 354 283 177

Table 2: Experimental results for certifiable criteria in CSI.

SC

PC CPCS

RL

3
0

0

3 7

15

10

2

0

13

0

511

1

28

Figure 18: Overlap between solved Cops for four confluence criteria.

by Corollary 3.7 (SC), Corollary 3.23 (PC), critical-pair-closing systems (CPCS)
and Theorem 4.6 (RL) in relation to each other. We omit Lemma 4.17(e),
since it is subsumed by Theorem 4.6. Overall the decreasing diagrams based
rule labeling technique turned out stronger than the other, simpler, mostly
syntactic criteria. On our test-bed Theorem 4.6 can establish confluence of as
many systems as the other three methods combined (83 systems), and by itself
shows confluence of more than 75 % of all systems that are certifiably confluent
by CSI’s direct methods (106 vs. 83). However, this power comes at a cost:
the certificates for confluence proofs by rule labeling are usually larger and
much harder to check for a human, making automatic, reliable certification
a necessity. The largest certificate (for Cop #60) has 769 KiB and lists 182
candidate joins for showing the 34 critical peaks decreasing. CeTA checks this
certificate in 0.3 s. We remark that no confluence tool besides CSI has solved
Cop #60 so far, stressing the importance of a certified proof.

126

8.3 Experimental Results

KB SC PC CPCS RL-L RL-LL NOTCR Σ (✓CSI)
yes 73 91 84 86 99 106 0 148
no 0 0 0 0 0 0 162 162
maybe 364 346 353 351 338 331 275 127

Table 3: Experimental results for certifiable criteria in combination with the
redundant rules technique.

CSInrr CSIjs CSIrhs CSIfc CSIdel CSI

yes 228 227 229 225 238 244
no 154 157 155 162 154 162
maybe 55 53 53 50 45 31

✓CSInrr ✓CSIjs ✓CSIrhs ✓CSIfc ✓CSIdel ✓CSI
yes 106 124 116 112 113 148
no 154 157 155 162 154 162
maybe 177 156 166 163 170 127

Table 4: Experimental results for different redundant rules heuristics.

That Knuth-Bendix’ criterion is the weakest of the listed techniques is easily
explained by the composition of Cops. It simply contains few terminating
systems. Since showing confluence is easy after termination has been established,
and in order to avoid skewing the database towards termination, they are often
deemed of little interest for Cops. The, possibly surprising, power of strong
closedness can be similarly explained. Of the 437 TRSs 286 are linear, while
only 53 are left-linear but not right-linear.

Finally we evaluate the redundant rules technique from Chapter 5. The
impact of redundant rules on each of the direct methods is shown in Table 3.
Comparing these numbers to the results from Table 2 reveals that all evaluated
criteria benefit heavily, for instance the power of parallel closedness more than
doubles. To assess the power of the different heuristics described in Section 5.3,
we consider each of them in combination with CSI’s full and certified strategies.
The results are shown in Table 4.

For the full strategy, adding joining sequences of critical pairs (js) or rewriting

127

Chapter 8 CSI and CSIˆho

right-hand sides (rhs) show limited effect: (js) gains 3 non-confluence proofs and
2 confluence proofs where it also loses 3; (rhs) gains 5 systems for confluence,
while losing 4, and results in 1 additional non-confluence proof. As expected
forward closures (fc) turn out strongest for non-confluence, gaining 8 proofs,
but weak for confluence, losing 4 proofs, while adding only 1. Removing rules
(del) is the most effective technique overall and gains 12 systems while losing
2 other ones. With all heuristics combined, 24 new systems can be shown
(non-)confluent.

For the certifiable strategy the results are the same for non-confluence, but
the picture for confluence is a bit different. Here, (rhs) gains 10 proofs, (js) gains
18 systems, (fc) gains 6, and (del) gains 21 proofs while losing 14. Remarkably,
in 15 of these 21 proofs the TRS becomes orthogonal after removing redundant
rules, which emphasizes that our transformations can considerably simplify
confluence proofs. In total, 50 new systems are shown (non-)confluent. Note
that not only does the redundant rules technique significantly increase the
number of certifiable confluence proofs, the resulting certificates can be virtually
impossible to check by hand, due to their size. The largest proof produced in
our experiments starts from a TRS with five rules, Cop #141, and extends it
with 50 redundant rules before showing confluence using a rule labeling—the
certificate in CPF has 14 MiB.

8.3.2 Higher-Order Rewrite Systems

For experiments in the higher-order setting we again used Cops version 764,
which contains 79 PRSs. We again start by comparing the participants of
CoCo 2017. Other than CSÎ ho 0.3, the contestants were SOL 1c_20173 and
ACPH 0.02, a higher-order extension of ACP. The results are shown in Table 5.

Note that ACPH reports some false negatives (Cops # 728, 729, and 730).
This is known since CoCo 2017 and the three systems are already removed
from ACPH’s results and listed separately, in the row labeled “erroneous”. On
the current test-bed CSÎ ho solves all systems where any of the tools produces
a proof. Solving the remaining 11 systems will require serious effort—they
contain e.g. lambda calculus with surjective pairing and self-distributivity of
explicit substitution.

The most powerful of CSÎ ho’s criteria is development closedness, which on
3https://www.cs.gunma-u.ac.jp/~hamana/

128

https://www.cs.gunma-u.ac.jp/~hamana/

8.3 Experimental Results

ACPH CSÎ ho SOL

yes 48 55 54
no 10 13 11
maybe 18 11 14
erroneous 3 0 0

Table 5: Comparison of CoCo 2017 participants for PRSs.

its own shows confluence of 43 systems, 37 of which are weakly orthogonal.
The critical pair lemma for terminating systems yields confluence proofs for 29
systems. For 3 of those proofs using WANDA as external termination prover is
essential. Redundant rules show limited effect on the PRSs in Cops. Removing
redundant rules is used in 3 of the proofs produced by CSÎ ho, while adding
redundant rules adds one additional proof of non-confluence, namely for the
system from Example 7.26.

We conclude by remarking that the possibility for subtle errors, like miscon-
figurations in the proof search strategy, the complexity of the generated proofs,
e.g. for the rule labeling, and YES-NO conflicts between tools illustrate that
certification is imperative in order to guarantee reliable automatic confluence
analysis.

129

Chapter 9

Conclusion
So beschließen beide denn

nach so manchem Doch und Wenn
sich mit ihren Theorien

vor die Wissenschaft zu knien.
Christian Morgenstern (Alle Galgenlieder)

In the preceding chapters, we have given an overview of our most prominent
contributions to IsaFoR/CeTA and CSI/CSÎ ho. After discussing preliminaries on
first- and higher-order rewriting in Chapter 2, we described our formalization
of classic confluence criteria based on restricted joinability of critical pairs and
a more modern approach based on critical-pair-closing systems in Chapter 3.
We generalized all results in Chapter 3 to the setting of commutation. Together
with our formalization of the rule labeling from Chapter 4 this covers all direct
confluence criteria that are currently available in IsaFoR. Chapter 5 was devoted
to the simple, yet widely applicable and surprisingly powerful technique of
redundant rules, which not only further increased the power of CeTA, but also
of the full strategy of CSI. We then switched to higher-order rewriting and
gave a short, simple, formal proof for confluence of the λ-calculus in Chapter 6,
before describing the theory behind our higher-order confluence prover CSÎ ho
in Chapter 7. Both CSI and CSÎ ho were discussed in detail in Chapter 8, where
we also gave an extensive experimental evaluation.

9.1 Related Work

While we covered CeTA’s full repertoire for confluence in this thesis, it is also
a powerful certifier for non-confluence proofs. CeTA can check that, given
derivations s →∗ t1 and s →∗ t2, t1 and t2 cannot be joined. Here the
supported justifications are:

131

Chapter 9 Conclusion

• testing that t1 and t2 are distinct normal forms,

• testing that tcap(t1σ) and tcap(t2σ) are not unifiable [114],

• usable rules, discrimination pairs, argument filters, and interpretations [3],
and

• reachability analysis using tree automata [27].

Formalizing confluence criteria has a long history in the λ-calculus. The
first mechanically verified proof of the Church-Rosser property of β-reduction
was done using the Boyer-Moore theorem prover [95]. Pfenning’s formalization
in Elf [85] was later used to formalize conservativity of extensional lambda
calculus with surjective pairing [101]. Huet [46] proved a stronger variant of
the parallel moves lemma in Coq. Nipkow [73] used Isabelle/HOL to prove
the Church-Rosser property of β, η, and βη. For β-reduction the standard
Tait/Martin-Löf proof as well as Takahashi’s proof [104] were formalized.

Newman’s lemma and the critical pair lemma (for first-order rewrite systems)
have been formalized using ACL2 [91]. An alternative proof of the latter in PVS,
following the structure of Huet’s proof, is presented in [30]. PVS is also used
in a formalization of the lemmas of Newman and Yokouchi [29]. Knuth and
Bendix’ criterion has also been formalized in Coq [18] and Isabelle/HOL [98].

Our work on redundant rules draws a lot of inspiration from existing literature.
One starting point is [80], where van Oostrom introduces the notion of feeble
orthogonality. A TRS is feebly orthogonal if the critical peaks arising from its
non-redundant∗ rules are trivial or contain a trivial step (that rewrites a term
to itself); a rule is redundant∗ if it can be simulated by another rule in a single
step. Clearly our notion of redundancy generalizes redundancy∗.

The most important prior work concerning redundant rules is [6]. In this
paper, Aoto and Toyama describe an automated confluence criterion, imple-
mented in ACP, based on decomposing TRSs into a reversible part P and
a terminating part S. In order to help applicability of their criterion, they
introduce a procedure based on the inference rules

replace ⟨S ∪ {ℓ→ r},P⟩
⟨S ∪ {ℓ→ r′},P⟩

r ↔∗
P r′ add ⟨S,P⟩

⟨S ∪ {ℓ→ r},P⟩
ℓ↔∗

P · →∗
S r

The key is that because P is reversible, ↔∗
P and →∗

P coincide, and therefore
confluence of S ∪ P is not affected by applying these inference rules. This very

132

9.1 Related Work

same idea underlies Lemma 5.3, which establishes reduction equivalence, and
thus Corollary 5.4. Note that no rule removal is performed in [6].

There is a second connection between our work and [6] that seems noteworthy.
Given a reversible P, every rule from P−1 can be simulated by a sequence
of P-steps. Therefore, confluence of S ∪ P and S ∪ P ∪ P−1 coincide by
Corollary 5.4. Using this observation, one could decompose the confluence
criteria of [6] into two steps, one that replaces P by P ∪ P−1, and a respective
underlying confluence criterion that does not make use of reversibility, but
instead demands that P is symmetric, i.e., P−1 ⊆ P.

The idea of showing confluence by removing rules whose sides are convertible
has already been used in the literature, e.g. [42, Example 11], which is a
variation of Example 4.7.

Other works of interest are [33,116], where Gramlich and Zantema apply a
similar idea to Corollary 5.4 to termination: If some additional requirements
are met, then termination of R ∪ {ℓ → r} is equivalent to termination of
R ∪ {ℓ → r′} where r →R r′ by a non-erasing rule. This is true for non-
overlapping TRSs [33, Theorem 4], or when the rule used in the r →R r′ step
is locally confluent by itself, left-linear, and furthermore it doesn’t overlap with
any rules from R∪ {ℓ→ r} except itself [116, Theorem 4].

While for first-order term rewriting basic concepts are well agreed-on, higher-
order rewriting comes in many different flavors. The first definition of a higher-
order rewriting formalism are Aczel’s contraction schemes, defined in 1978 [1].
His definition extends first-order rewriting with binders and meta-variables,
which allows higher-order functions to be defined. Extending this idea Klop
defined combinatory reduction systems in 1980 in his thesis [52]. The first
formalisms to use types were introduced in 1991, namely the higher-order
rewrite systems by Nipkow [70] described in this thesis and algebraic functional
systems by Jouannaud and Okada [48]. Other formalisms introduced in the
1990s include the expression reduction systems of Khasidashvili [50], Wolfram’s
higher-order term rewriting systems [112], interaction systems by Laneve [61],
combinatory reduction systems with eXtensions by Rose [90], abstract data
type systems defined by Jouannaud and Okada [49] and inductive data type
systems by Blanqui [15].

Due to the many different formalisms, the study of higher-order rewriting is
a heterogeneous field. The termination competition for instance uses algebraic
functional systems as their format of choice, and consequently most work
on termination happened for that formalism. The only formalization effort

133

Chapter 9 Conclusion

for higher-order rewriting we are aware of is a formalization of HORPO for
algebraic functional systems in Coq [57].

An interesting recent development was sparked by an extension of the class
of higher-order patterns, where unification is still decidable [62]. This result is
the basis of the new higher-order tool SOL [37], which can analyze confluence
of a larger class of systems than CSÎ ho. Moreover this extension allows for
a higher-order completion procedure. For PRSs, while technically possible,
completion almost always fails immediately, since right-hand sides of rules are
usually not patterns, making it impossible to orient newly deduced equations
as rewrite rules.

9.2 Future Work
While we could increase the number of certifiable confluence proofs significantly
over the last few years, further efforts are needed in order to reach the full
power of automatic confluence tools. In particular criteria for dealing with
systems containing AC rules are needed to close the gap.

To strengthen confluence tools further, automating the Z-property would
benefit both first- and higher-order provers, in order to deal with rules like
self-distributivity.

Recently there is interest in automating properties related to confluence
as witnessed by the categories on unique normalization in CoCo 2017. More
work will be needed to obtain provers for these properties that are as powerful
as state-of-the-art confluence tools. An easy first step could be to use the
redundant rules technique. For instance, extending a TRS R with a rule
ℓ → r for which we have ℓ →+

R r affects neither the set of normal forms nor
reachability.

Finally, formalization is needed for higher-order rewriting. Not just for
certification, but to leverage the synergy between rewriting techniques and proof
assistants. Often they use rewriting for equational reasoning, Isabelle/HOL
for instance uses conditional higher-order rewriting. Here the choice what
theorems to use as rewrite rules is usually left to the user, which means that
there are no guarantees about confluence or termination of these systems.

134

Bibliography
[1] P. Aczel. A general Curch-Rosser theorem. Unpublished Manuscript,

University of Manchester, 1978.

[2] T. Aoto. Automated confluence proof by decreasing diagrams based on
rule-labelling. In Proc. 21st International Conference on Rewriting Tech-
niques and Applications, volume 6 of Leibniz International Proceedings
in Informatics, pages 7–16, 2010. doi: 10.4230/LIPIcs.RTA.2010.7.

[3] T. Aoto. Disproving confluence of term rewriting systems by interpreta-
tion and ordering. In Proc. 9th International Workshop on Frontiers of
Combining Systems, volume 8152 of Lecture Notes in Artificial Intelli-
gence, pages 311–326, 2013. doi: 10.1007/978-3-642-40885-4_22.

[4] T. Aoto, N. Hirokawa, J. Nagele, N. Nishida, and H. Zankl. Confluence
Competition 2015. In Proc. 25th International Conference on Automated
Deduction, volume 9195 of Lecture Notes in Artificial Intelligence, pages
101–104, 2015. doi: 10.1007/978-3-319-21401-6_5.

[5] T. Aoto and Y. Toyama. Persistency of confluence. Journal of
Universal Computer Science, 3(11):1134–1147, 1997. doi: 10.3217/
jucs-003-11-1134.

[6] T. Aoto and Y. Toyama. A reduction-preserving completion for proving
confluence of non-terminating term rewriting systems. Logical Methods in
Computer Science, 8(1:31):1–29, 2012. doi: 10.2168/LMCS-8(1:31)2012.

[7] T. Aoto, Y. Toyama, and K. Uchida. Proving confluence of term rewriting
systems via persistency and decreasing diagrams. In Proc. Joint 25th
International Conference on Rewriting Techniques and Applications and
12th International Conference on Typed Lambda Calculi and Applications,
volume 8560 of Lecture Notes in Computer Science (Advanced Research
in Computing and Software Science), pages 46–60, 2014. doi: 10.1007/
978-3-319-08918-8_4.

135

http://dx.doi.org/10.4230/LIPIcs.RTA.2010.7
http://dx.doi.org/10.1007/978-3-642-40885-4_22
http://dx.doi.org/10.1007/978-3-319-21401-6_5
http://dx.doi.org/10.3217/jucs-003-11-1134
http://dx.doi.org/10.3217/jucs-003-11-1134
http://dx.doi.org/10.2168/LMCS-8(1:31)2012
http://dx.doi.org/10.1007/978-3-319-08918-8_4
http://dx.doi.org/10.1007/978-3-319-08918-8_4

Bibliography

[8] T. Aoto, J. Yoshida, and Y. Toyama. Proving confluence of term rewriting
systems automatically. In Proc. 20th International Conference on Rewrit-
ing Techniques and Applications, volume 5595 of Lecture Notes in Com-
puter Science, pages 93–102, 2009. doi: 10.1007/978-3-642-02348-4_7.

[9] C. Appel, V. van Oostrom, and J. G. Simonsen. Higher-order
(non-)modularity. In Proc. 21st International Conference on Rewriting
Techniques and Applications, volume 6 of Leibniz International Proceed-
ings in Informatics, pages 17–32, 2010. doi: 10.4230/LIPIcs.RTA.2010.
17.

[10] T. Arts and J. Giesl. Termination of term rewriting using dependency
pairs. Theoretical Computer Science, 236(1-2):133–178, 2000. doi: 10.
1016/S0304-3975(99)00207-8.

[11] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998. doi: 10.1017/CBO9781139172752.

[12] H. P. Barendregt. The Lambda Calculus, Its Syntax and Semantics.
North-Holland, 2nd edition, 1984.

[13] H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 2, pages 117–309. Oxford University Press, 1992.

[14] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program
Development; Coq’Art: The Calculus of Inductive Constructions. Texts
in Theoretical Computer Science. Springer, 2004.

[15] F. Blanqui. Termination and confluence of higher-order rewrite systems.
In Proc. 11th International Conference on Rewriting Techniques and
Applications, volume 1833 of Lecture Notes in Computer Science, pages
47–61, 2000. doi: 10.1007/10721975_4.

[16] F. Blanqui and A. Koprowski. CoLoR, a Coq library on well-founded
rewrite relations and its application to the automated verification of
termination certificates. Mathematical Structures in Computer Science,
21(4):827–859, 2011. doi: 10.1017/S0960129511000120.

136

http://dx.doi.org/10.1007/978-3-642-02348-4_7
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.17
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.17
http://dx.doi.org/10.1016/S0304-3975(99)00207-8
http://dx.doi.org/10.1016/S0304-3975(99)00207-8
http://dx.doi.org/10.1017/CBO9781139172752
http://dx.doi.org/10.1007/10721975_4
http://dx.doi.org/10.1017/S0960129511000120

Bibliography

[17] E. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain. Automated
certified proofs with CiME3. In Proc. 22nd International Conference on
Rewriting Techniques and Applications, volume 10 of Leibniz International
Proceedings in Informatics, pages 21–30, 2011. doi: 10.4230/LIPIcs.RTA.
2011.21.

[18] E. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain. Automated
certified proofs with CiME3. In Proc. 22nd International Conference on
Rewriting Techniques and Applications, volume 10 of Leibniz International
Proceedings in Informatics, pages 21–30, 2011. doi: 10.4230/LIPIcs.RTA.
2011.21.

[19] P. Dehornoy. Braids and Self-Distributivity, volume 192 of Progress in
Mathematics. Springer, 2000. doi: 10.1007/978-3-0348-8442-6.

[20] P. Dehornoy and V. van Oostrom. Z, proving confluence by mono-
tonic single-step upperbound functions. Presentation at International
Conference Logical Models of Reasoning and Computation, August 2008.

[21] B. Felgenhauer. Deciding confluence of ground term rewrite systems in
cubic time. In Proc. 23rd International Conference on Rewriting Tech-
niques and Applications, volume 15 of Leibniz International Proceedings in
Informatics, pages 165–175, 2012. doi: 10.4230/LIPIcs.RTA.2012.165.

[22] B. Felgenhauer. A proof order for decreasing diagrams. In Proc. 1st
International Workshop on Confluence, pages 7–14, 2012.

[23] B. Felgenhauer. Decreasing diagrams II. Archive of Formal Proofs, Aug.
2015. Formal proof development, http://www.isa-afp.org/entries/
Decreasing-Diagrams-II.shtml.

[24] B. Felgenhauer. Efficiently deciding uniqueness of normal forms and
unique normalization for ground TRSs. In Proc. 5th International
Workshop on Confluence, pages 16–20, 2016. Available from http:
//cl-informatik.uibk.ac.at/iwc/2016.php.

[25] B. Felgenhauer, A. Middeldorp, H. Zankl, and V. van Oostrom. Layer
systems for proving confluence. ACM Transactions on Computational
Logic, 16(2:14):1–32, 2015. doi: 10.1145/2710017.

137

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.21
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.21
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.21
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.21
http://dx.doi.org/10.1007/978-3-0348-8442-6
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.165
http://www.isa-afp.org/entries/Decreasing-Diagrams-II.shtml
http://www.isa-afp.org/entries/Decreasing-Diagrams-II.shtml
http://cl-informatik.uibk.ac.at/iwc/2016.php
http://cl-informatik.uibk.ac.at/iwc/2016.php
http://dx.doi.org/10.1145/2710017

Bibliography

[26] B. Felgenhauer, J. Nagele, V. van Oostrom, and C. Sternagel. The Z
property. Archive of Formal Proofs, June 2016. Formal proof development,
https://www.isa-afp.org/entries/Rewriting_Z.shtml.

[27] B. Felgenhauer and R. Thiemann. Reachability, confluence, and ter-
mination analysis with state-compatible automata. Information and
Computation, 253(3):467–483, 2017. doi: 10.1016/j.ic.2016.06.011.

[28] B. Felgenhauer and V. van Oostrom. Proof orders for decreasing diagrams.
In Proc. 24th International Conference on Rewriting Techniques and Ap-
plications, volume 21 of Leibniz International Proceedings in Informatics,
pages 174–189, 2013. doi: 10.4230/LIPIcs.RTA.2013.174.

[29] A. Galdino and M. Ayala-Rincón. A formalization of Newman’s and
Yokouchi’s lemmas in a higher-order language. Journal of Formalized
Reasoning, 1(1):39–50, 2008. doi: 10.6092/issn.1972-5787/1347.

[30] A. Galdino and M. Ayala-Rincón. A formalization of the Knuth-
Bendix(-Huet) critical pair theorem. Journal of Automated Reasoning,
45(3):301–325, 2010. doi: 10.1007/s10817-010-9165-2.

[31] A. Geser, A. Middeldorp, E. Ohlebusch, and H. Zantema. Relative unde-
cidability in term rewriting: II. The confluence hierarchy. Information
and Computation, 178(1):132–148, 2002. doi: 10.1006/inco.2002.3150.

[32] W. D. Goldfarb. The undecidability of the second-order unification
problem. Theoretical Computer Science, 13(2):225–230, 1981. doi: 10.
1016/0304-3975(81)90040-2.

[33] B. Gramlich. Simplifying termination proofs for rewrite systems by
preprocessing. In Proc. 2nd ACM SIGPLAN International Conference
on Principles and Practice of Declarative Programming, pages 139–150,
2000. doi: 10.1145/351268.351286.

[34] B. Gramlich and S. Lucas. Generalizing Newman’s lemma for left-linear
rewrite systems. In Proc. 17th International Conference on Rewriting
Techniques and Applications, volume 4098 of Lecture Notes in Computer
Science, pages 66–80, 2006. doi: 10.1007/11805618_6.

138

https://www.isa-afp.org/entries/Rewriting_Z.shtml
http://dx.doi.org/10.1016/j.ic.2016.06.011
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.174
http://dx.doi.org/10.6092/issn.1972-5787/1347
http://dx.doi.org/10.1007/s10817-010-9165-2
http://dx.doi.org/10.1006/inco.2002.3150
http://dx.doi.org/10.1016/0304-3975(81)90040-2
http://dx.doi.org/10.1016/0304-3975(81)90040-2
http://dx.doi.org/10.1145/351268.351286
http://dx.doi.org/10.1007/11805618_6

Bibliography

[35] F. Haftmann. Code Generation from Specifications in Higher Order
Logic. Dissertation, Technische Universität München, München, 2009.
urn:nbn:de:bvb:91-diss-20091208-886023-1-1.

[36] F. Haftmann and T. Nipkow. Code generation via higher-order rewrite
systems. In Proc. 10th International Symposium on Functional and Logic
Programming, volume 6009 of Lecture Notes in Computer Science, pages
103–117, 2010. doi: 10.1007/978-3-642-12251-4_9.

[37] M. Hamana. How to prove your calculus is decidable: Practical ap-
plications of second-order algebraic theories and computation. Proc.
of the ACM on Programming Languages, 1(ICFP):22:1–22:28, 2017.
doi: 10.1145/3110266.

[38] J. Hindley. The Church-Rosser Property and a Result in Combinatory
Logic. PhD thesis, University of Newcastle-upon-Tyne, 1964.

[39] N. Hirokawa. Commutation and signature extensions. In Proc. 4th
International Workshop on Confluence, pages 23–27, 2015.

[40] N. Hirokawa and A. Middeldorp. Tyrolean termination tool: Tech-
niques and features. Information and Computation, 205(4):474–511,
2007. doi: 10.1016/j.ic.2006.08.010.

[41] N. Hirokawa and A. Middeldorp. Decreasing diagrams and relative
termination. In Proc. 5th International Joint Conference on Automated
Reasoning, volume 6173 of Lecture Notes in Artificial Intelligence, pages
487–501, 2010. doi: 10.1007/978-3-642-14203-1_41.

[42] N. Hirokawa and A. Middeldorp. Decreasing diagrams and relative
termination. Journal of Automated Reasoning, 47(4):481–501, 2011.
doi: 10.1007/s10817-011-9238-x.

[43] N. Hirokawa and A. Middeldorp. Commutation via relative termination.
In Proc. 2nd International Workshop on Confluence, pages 29–33, 2013.

[44] N. Hirokawa, A. Middeldorp, S. Winkler, and C. Sternagel. Infinite
runs in abstract completion. In Proc. 2nd International Conference
on Formal Structures for Computation and Deduction, volume 84 of
Leibniz International Proceedings in Informatics, pages 19:1–19:16, 2017.
doi: 10.4230/LIPIcs.FSCD.2017.19.

139

http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20091208-886023-1-1
http://dx.doi.org/10.1007/978-3-642-12251-4_9
http://dx.doi.org/10.1145/3110266
http://dx.doi.org/10.1016/j.ic.2006.08.010
http://dx.doi.org/10.1007/978-3-642-14203-1_41
http://dx.doi.org/10.1007/s10817-011-9238-x
http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.19

Bibliography

[45] G. Huet. Confluent reductions: Abstract properties and applications
to term rewriting systems. Journal of the ACM, 27(4):797–821, 1980.
doi: 10.1145/322217.322230.

[46] G. Huet. Residual theory in λ-calculus: A formal development. Jour-
nal of Functional Programming, 4(3):371–394, 1994. doi: 10.1017/
S0956796800001106.

[47] G. Huet and B. Lang. Proving and applying program transformations
expressed with second-order patterns. Acta Informatica, 11(1):31–55,
1978. doi: 10.1007/BF00264598.

[48] J.-P. Jouannaud and M. Okada. A computation model for exe-
cutable higher-order algebraic specification languages. In Proc. 6th
IEEE Symposium on Logic in Computer Science, pages 350–361, 1991.
doi: 10.1109/LICS.1991.151659.

[49] J.-P. Jouannaud and M. Okada. Abstract data type systems. Theoretical
Computer Science, 173(2):349–391, 1997. doi: 10.1016/S0304-3975(96)
00161-2.

[50] Z. Khasidashvili. Expression reduction systems. Technical Report 36,
Vekua Institute of Applied Mathematics of Tbilisi State University, 1990.

[51] D. Klein and N. Hirokawa. Confluence of non-left-linear TRSs via relative
termination. In Proc. 18th International Conference on Logic for Program-
ming, Artificial Intelligence, and Reasoning, volume 7180 of Lecture Notes
in Computer Science (Advanced Research in Computing and Software
Science), pages 258–273, 2012. doi: 10.1007/978-3-642-28717-6_21.

[52] J. Klop. Combinatory Reduction Systems. PhD thesis, Utrecht University,
1980.

[53] J. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduc-
tion systems: Introduction and survey. Theoretical Computer Science,
121(1-2):279–308, 1993. doi: 10.1016/0304-3975(93)90091-7.

[54] D. Knuth and P. Bendix. Simple word problems in universal algebras.
In J. Leech, editor, Computational Problems in Abstract Algebra, pages
263–297. Pergamon Press, 1970. doi: 10.1016/B978-0-08-012975-4.
50028-X.

140

http://dx.doi.org/10.1145/322217.322230
http://dx.doi.org/10.1017/S0956796800001106
http://dx.doi.org/10.1017/S0956796800001106
http://dx.doi.org/10.1007/BF00264598
http://dx.doi.org/10.1109/LICS.1991.151659
http://dx.doi.org/10.1016/S0304-3975(96)00161-2
http://dx.doi.org/10.1016/S0304-3975(96)00161-2
http://dx.doi.org/10.1007/978-3-642-28717-6_21
http://dx.doi.org/10.1016/0304-3975(93)90091-7
http://dx.doi.org/10.1016/B978-0-08-012975-4.50028-X
http://dx.doi.org/10.1016/B978-0-08-012975-4.50028-X

Bibliography

[55] C. Kop. Higher Order Termination. PhD thesis, Vrije Universiteit
Amsterdam, 2012.

[56] C. Kop and F. van Raamsdonk. Dynamic dependency pairs for algebraic
functional systems. Logical Methods in Computer Science, 8(2:10):1–51,
2012. doi: 10.2168/LMCS-8(2:10)2012.

[57] A. Koprowski. Termination of Rewriting and Its Certification. PhD
thesis, Eindhoven University of Technology, 2008.

[58] M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Ter-
mination Tool 2. In Proc. 20th International Conference on Rewriting
Techniques and Applications, volume 5595 of Lecture Notes in Computer
Science, pages 295–304, 2009. doi: 10.1007/978-3-642-02348-4_21.

[59] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static dependency pair
method based on strong computability for higher-order rewrite systems.
IEICE Transactions on Information and Systems, E92-D(10):2007–2015,
2009. doi: 10.1587/transinf.E92.D.2007.

[60] K. Kusakari and M. Sakai. Enhancing dependency pair method using
strong computability in simply-typed term rewriting. Applicable Algebra
in Engineering, Communication and Computing, 18(5):407–431, 2007.
doi: 10.1007/s00200-007-0046-9.

[61] C. Laneve. Optimality and Concurrency in Interaction Systems. PhD
thesis, Università di Pisa, 1993.

[62] T. Libal and D. Miller. Functions-as-constructors higher-order unification.
In Proc. 1st International Conference on Formal Structures for Computa-
tion and Deduction, volume 52 of Leibniz International Proceedings in In-
formatics, pages 26:1–26:17, 2016. doi: 10.4230/LIPIcs.FSCD.2016.26.

[63] D. Matichuk, T. Murray, and M. Wenzel. Eisbach: A proof method
language for Isabelle. Journal of Automated Reasoning, 56(3):261–282,
2016. doi: 10.1007/s10817-015-9360-2.

[64] R. Mayr and T. Nipkow. Higher-order rewrite systems and their conflu-
ence. Theoretical Computer Science, 192(1):3–29, 1998. doi: 10.1016/
S0304-3975(97)00143-6.

141

http://dx.doi.org/10.2168/LMCS-8(2:10)2012
http://dx.doi.org/10.1007/978-3-642-02348-4_21
http://dx.doi.org/10.1587/transinf.E92.D.2007
http://dx.doi.org/10.1007/s00200-007-0046-9
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.26
http://dx.doi.org/10.1007/s10817-015-9360-2
http://dx.doi.org/10.1016/S0304-3975(97)00143-6
http://dx.doi.org/10.1016/S0304-3975(97)00143-6

Bibliography

[65] D. Miller. A logic programming language with lambda-abstraction, func-
tion variables, and simple unification. Journal of Logic and Computation,
1(4):497–536, 1991. doi: 10.1093/logcom/1.4.497.

[66] J. Nagele, B. Felgenhauer, and A. Middeldorp. CSI: New evidence – A
progress report. In Proc. 26th International Conference on Automated
Deduction, volume 10395 of Lecture Notes in Artificial Intelligence, pages
385–397, 2017. doi: 10.1007/978-3-319-63046-5_24.

[67] J. Nagele and R. Thiemann. Certification of confluence proofs using
CeTA. In Proc. 3rd International Workshop on Confluence, pages 19–23,
2014.

[68] J. Nagele and H. Zankl. Certified rule labeling. In Proc. 26th International
Conference on Rewriting Techniques and Applications, volume 36 of
Leibniz International Proceedings in Informatics, pages 269–284, 2015.
doi: 10.4230/LIPIcs.RTA.2015.269.

[69] M. Newman. On theories with a combinatorial definition of equivalence.
Annals of Mathematics, 43(2):223–243, 1942.

[70] T. Nipkow. Higher-order critical pairs. In Proc. 6th IEEE Symposium
on Logic in Computer Science, pages 342–349, 1991. doi: 10.1109/LICS.
1991.151658.

[71] T. Nipkow. Functional unification of higher-order patterns. In Proc.
8th IEEE Symposium on Logic in Computer Science, pages 64–74, 1993.
doi: 10.1109/LICS.1993.287599.

[72] T. Nipkow. Orthogonal higher-order rewrite systems are confluent. In
Proc. 1st International Conference on Typed Lambda Calculi and Applica-
tions, volume 664 of Lecture Notes in Computer Science, pages 306–317,
1993. doi: 10.1007/BFb0037114.

[73] T. Nipkow. More Church-Rosser proofs. Journal of Automated Reasoning,
26(1):51–66, 2001. doi: 10.1023/A:1006496715975.

[74] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer
Science. Springer, 2002. doi: 10.1007/3-540-45949-9.

142

http://dx.doi.org/10.1093/logcom/1.4.497
http://dx.doi.org/10.1007/978-3-319-63046-5_24
http://dx.doi.org/10.4230/LIPIcs.RTA.2015.269
http://dx.doi.org/10.1109/LICS.1991.151658
http://dx.doi.org/10.1109/LICS.1991.151658
http://dx.doi.org/10.1109/LICS.1993.287599
http://dx.doi.org/10.1007/BFb0037114
http://dx.doi.org/10.1023/A:1006496715975
http://dx.doi.org/10.1007/3-540-45949-9

Bibliography

[75] S. Okui. Simultaneous critical pairs and Church-Rosser property. In Proc.
9th International Conference on Rewriting Techniques and Applications,
volume 1379 of Lecture Notes in Computer Science, pages 2–16, 1998.
doi: 10.1007/BFb0052357.

[76] V. van Oostrom. Confluence by decreasing diagrams. Theoretical
Computer Science, 126(2):259–280, 1994. doi: 10.1016/0304-3975(92)
00023-K.

[77] V. van Oostrom. Confluence for Abstract and Higher-Order Rewriting.
PhD thesis, Vrije Universiteit Amsterdam, 1994.

[78] V. van Oostrom. Developing developments. Theoretical Computer Science,
175(1):159–181, 1997. doi: 10.1016/S0304-3975(96)00173-9.

[79] V. van Oostrom. Confluence by decreasing diagrams – converted. In Proc.
19th International Conference on Rewriting Techniques and Applications,
volume 5117 of Lecture Notes in Computer Science, pages 306–320, 2008.
doi: 10.1007/978-3-540-70590-1_21.

[80] V. van Oostrom. Feebly not weakly. In Proc. 7th International Workshop
on Higher-Order Rewriting, Vienna Summer of Logic flash drive, 2014.

[81] V. van Oostrom and F. van Raamsdonk. Weak orthogonality implies con-
fluence: The higher order case. In Proc. 3rd International Symposium on
Logical Foundations of Computer Science, volume 813 of Lecture Notes in
Computer Science, pages 379–392, 1994. doi: 10.1007/3-540-58140-5_
35.

[82] M. Oyamaguchi and N. Hirokawa. Confluence and critical-pair-closing
systems. In Proc. 3rd International Workshop on Confluence, pages
29–33, 2014.

[83] M. Oyamaguchi and Y. Ohta. On the Church-Rosser property of left-
linear term rewriting systems. IEICE Transactions on Information
and Systems, E86-D(1):131–135, 2003. http://search.ieice.org/bin/
summary.php?id=e86-d_1_131.

[84] G. E. Peterson and M. E. Stickel. Complete sets of reductions for
some equational theories. Journal of the ACM, 28(2):233–264, 1981.
doi: 10.1145/322248.322251.

143

http://dx.doi.org/10.1007/BFb0052357
http://dx.doi.org/10.1016/0304-3975(92)00023-K
http://dx.doi.org/10.1016/0304-3975(92)00023-K
http://dx.doi.org/10.1016/S0304-3975(96)00173-9
http://dx.doi.org/10.1007/978-3-540-70590-1_21
http://dx.doi.org/10.1007/3-540-58140-5_35
http://dx.doi.org/10.1007/3-540-58140-5_35
http://search.ieice.org/bin/summary.php?id=e86-d_1_131
http://search.ieice.org/bin/summary.php?id=e86-d_1_131
http://dx.doi.org/10.1145/322248.322251

Bibliography

[85] F. Pfenning. A proof of the Church-Rosser theorem and its representation
in a logical framework. Technical Report CMU-CS-92-186, School of
Computer Science, Carnegie Mellon University, 1992.

[86] Z. Qian. Unification of higher-order patterns in linear time and space.
Journal of Logic and Computation, 6(3):315–341, 1996. doi: 10.1093/
logcom/6.3.315.

[87] F. van Raamsdonk. Confluence and Normalisation for Higher-Order
Rewriting. PhD thesis, Vrije Universiteit Amsterdam, 1996.

[88] F. van Raamsdonk. On termination of higher-order rewriting. In Proc.
12th International Conference on Rewriting Techniques and Applications,
volume 2051 of Lecture Notes in Computer Science, pages 261–275, 2001.
doi: 10.1007/3-540-45127-7_20.

[89] L. Regnier. Une équivalence sur les lambda-termes. Theoretical Computer
Science, 126(2):281–292, 1994. doi: 10.1016/0304-3975(94)90012-4.

[90] K. H. Rose. Operational Reduction Models for Functional Programming
Languages. PhD thesis, University of Copenhagen, 1996.

[91] J.-L. Ruiz-Reina, J.-A. Alonso, M.-J. Hidalgo, and F.-J. Martín-Mateos.
Formal proofs about rewriting using ACL2. Annals of Mathemat-
ics and Artificial Intelligence, 36(3):239–262, 2002. doi: 10.1023/A:
1016003314081.

[92] M. Sakai and K. Kusakari. On dependency pair method for proving
termination of higher-order rewrite systems. IEICE Transactions on In-
formation and Systems, E88-D(3):583–593, 2005. doi: 10.1093/ietisy/
e88-d.3.583.

[93] M. Sakai, M. Oyamaguchi, and M. Ogawa. Non-E-overlapping, weakly
shallow, and non-collapsing TRSs are confluent. In Proc. 25th Interna-
tional Conference on Automated Deduction, volume 9195 of Lecture
Notes in Artificial Intelligence, pages 111–126, 2015. doi: 10.1007/
978-3-319-21401-6_7.

[94] M. Sakai, Y. Watanabe, and T. Sakabe. An extension of the dependency
pair method for proving termination of higher-order rewrite systems.

144

http://dx.doi.org/10.1093/logcom/6.3.315
http://dx.doi.org/10.1093/logcom/6.3.315
http://dx.doi.org/10.1007/3-540-45127-7_20
http://dx.doi.org/10.1016/0304-3975(94)90012-4
http://dx.doi.org/10.1023/A:1016003314081
http://dx.doi.org/10.1023/A:1016003314081
http://dx.doi.org/10.1093/ietisy/e88-d.3.583
http://dx.doi.org/10.1093/ietisy/e88-d.3.583
http://dx.doi.org/10.1007/978-3-319-21401-6_7
http://dx.doi.org/10.1007/978-3-319-21401-6_7

Bibliography

IEICE Transactions on Information and Systems, E84-D(8):1025–1032,
2001.

[95] N. Shankar. A mechanical proof of the Church-Rosser theorem. Journal
of the ACM, 35(3):475–522, 1988. doi: 10.1145/44483.44484.

[96] K. Shintani and N. Hirokawa. CoLL: A confuence tool for left-linear term
rewrite systems. In Proc. 25th International Conference on Automated
Deduction, volume 9195 of Lecture Notes in Artificial Intelligence, pages
127–136, 2015. doi: 10.1007/978-3-319-21401-6_8.

[97] R. Statman. The typed lambda-calculus is not elementary recursive. Theo-
retical Computer Science, 9(1):73–81, 1979. doi: 10.1016/0304-3975(79)
90007-0.

[98] C. Sternagel and R. Thiemann. Formalizing Knuth-Bendix orders and
Knuth-Bendix completion. In Proc. 24th International Conference on
Rewriting Techniques and Applications, volume 21 of Leibniz International
Proceedings in Informatics, pages 287–302, 2013. doi: 10.4230/LIPIcs.
RTA.2013.287.

[99] C. Sternagel and R. Thiemann. The certification problem format. In Proc.
11th International Workshop on User Interfaces for Theorem Provers,
volume 167 of Electronic Proceedings in Theoretical Computer Science,
pages 61–72, 2014. doi: 10.4204/EPTCS.167.8.

[100] C. Stirling. Decidability of higher-order matching. Logical Methods in
Computer Science, 5(3:2):1–52, 2009. doi: 10.2168/LMCS-5(3:2)2009.

[101] K. Støvring. Extending the extensional lambda calculus with surjective
pairing is conservative. Logical Methods in Computer Science, 2(2:1):1–14,
2006. doi: 10.2168/LMCS-2(2:1)2006.

[102] S. Suzuki, K. Kusakari, and F. Blanqui. Argument filterings and us-
able rules in higher-order rewrite systems. IPSJ Online Transactions,
4(2):1–12, 2011. doi: 10.2197/ipsjtrans.4.114.

[103] T. Suzuki, T. Aoto, and Y. Toyama. Confluence proofs of term rewriting
systems based on persistency. Computer Software, 30(3):148–162, 2013.
in Japanese. doi: 10.11309/jssst.30.3_148.

145

http://dx.doi.org/10.1145/44483.44484
http://dx.doi.org/10.1007/978-3-319-21401-6_8
http://dx.doi.org/10.1016/0304-3975(79)90007-0
http://dx.doi.org/10.1016/0304-3975(79)90007-0
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.287
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.287
http://dx.doi.org/10.4204/EPTCS.167.8
http://dx.doi.org/10.2168/LMCS-5(3:2)2009
http://dx.doi.org/10.2168/LMCS-2(2:1)2006
http://dx.doi.org/10.2197/ipsjtrans.4.114
http://dx.doi.org/10.11309/jssst.30.3_148

Bibliography

[104] M. Takahashi. Parallel reductions in λ-calculus. Information and Com-
putation, 118(1):120–127, 1995. doi: 10.1006/inco.1995.1057.

[105] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2003.

[106] R. Thiemann and C. Sternagel. Certification of termination proofs using
CeTA. In Proc. 22nd International Conference on Theorem Proving in
Higher Order Logics, volume 5674 of Lecture Notes in Computer Science,
pages 452–468, 2009. doi: 10.1007/978-3-642-03359-9_31.

[107] Y. Toyama. Commutativity of term rewriting systems. In K. Fuchi and
L. Kott, editors, Programming of Future Generation Computers II, pages
393–407. North-Holland, 1988.

[108] Y. Toyama and M. Oyamaguchi. Church-Rosser property and unique
normal form property of non-duplicating term rewriting systems. In
Proc. 4th International Workshop on Conditional and Typed Rewriting
Systems, pages 316–331, 1995. doi: 10.1007/3-540-60381-6_19.

[109] C. Urban and C. Kaliszyk. General bindings and alpha-equivalence in
Nominal Isabelle. Logical Methods in Computer Science, 8(2:14):1–35,
2012. doi: 10.2168/LMCS-8(2:14)2012.

[110] J. B. Wells, D. Plump, and F. Kamareddine. Diagrams for meaning
preservation. In Proc. 14th International Conference on Rewriting Tech-
niques and Applications, volume 2706 of Lecture Notes in Computer
Science, pages 88–106, 2003. doi: 10.1007/3-540-44881-0_8.

[111] T. Wierzbicki. Complexity of the higher order matching. In Proc.
16th International Conference on Automated Deduction, volume 1632 of
Lecture Notes in Artificial Intelligence, pages 82–96, 1999. doi: 10.1007/
3-540-48660-7_6.

[112] D. A. Wolfram. Rewriting, and equational unification: the higher-order
cases. In Proc. 4th International Conference on Rewriting Techniques
and Applications, volume 488 of Lecture Notes in Computer Science,
pages 25–36, 1991. doi: 10.1007/3-540-53904-2_83.

146

http://dx.doi.org/10.1006/inco.1995.1057
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.1007/3-540-60381-6_19
http://dx.doi.org/10.2168/LMCS-8(2:14)2012
http://dx.doi.org/10.1007/3-540-44881-0_8
http://dx.doi.org/10.1007/3-540-48660-7_6
http://dx.doi.org/10.1007/3-540-48660-7_6
http://dx.doi.org/10.1007/3-540-53904-2_83

Bibliography

[113] H. Zankl. Confluence by decreasing diagrams – formalized. In Proc.
24th International Conference on Rewriting Techniques and Applications,
volume 21 of Leibniz International Proceedings in Informatics, pages
352–367, 2013. doi: 10.4230/LIPIcs.RTA.2013.352.

[114] H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI – A confluence tool.
In Proc. 23rd International Conference on Automated Deduction, volume
6803 of Lecture Notes in Artificial Intelligence, pages 499–505, 2011.
doi: 10.1007/978-3-642-22438-6_38.

[115] H. Zankl, B. Felgenhauer, and A. Middeldorp. Labelings for decreasing
diagrams. Journal of Automated Reasoning, 54(2):101–133, 2015. doi: 10.
1007/s10817-014-9316-y.

[116] H. Zantema. Reducing right-hand sides for termination. In Processes,
Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated to
Jan Willem Klop, on the Occasion of his 60th Birthday, volume 3838 of
Lecture Notes in Computer Science, pages 173–197, 2005. doi: 10.1007/
11601548_12.

147

http://dx.doi.org/10.4230/LIPIcs.RTA.2013.352
http://dx.doi.org/10.1007/978-3-642-22438-6_38
http://dx.doi.org/10.1007/s10817-014-9316-y
http://dx.doi.org/10.1007/s10817-014-9316-y
http://dx.doi.org/10.1007/11601548_12
http://dx.doi.org/10.1007/11601548_12

Index

→, 10
←, 10
↔, 11
↔∗, 11
→!, 10
↓, 10
R · S, 10
R∗, 10
R+, 10
R=, 10
Rn, 10
R−1, 10
→R, 21, 27
→ϵ, 21
−→∥ , 22, 39, 65
−→○ , 22
←⋊→, 23, 108
←·⋊→, 23
←⋉⋊→, 23
→β, 25, 98
→η, 25
↓β, 25
↑η, 26
↕ηβ, 26
=α, 25
×, 9
>mul, 10
ϵ, 18

<, 18
⩽, 18
∥, 18
\, 18
□, 18, 25
◁, 19, 27
⊴, 19, 27
▲, 40
•, 100
·β, 100
≻, 110
C[t1, . . . , tn], 20
C[t], 19, 25
t [x := s], 20, 97
t[]p, 19
t[s]p, 19
tσ, 20, 25
t|p, 18, 27
|t|, 18
|t|x, 17
x ♯ t, 96
B, 24
bv(t), 24
bv(t, p), 108
F , 17, 26
FC(R), 90
fv(t), 24
id, 10

149

Index

Λ→, 24
lsrc, 72
li, 60
N, 9
N+, 9
NF, 10
Pos(t), 18, 27
PosF (t), 18
PosV(t), 18
Sub(t), 27
T , 17
TB, 24
tp(t), 27
V, 17, 24

abstract rewrite system, 10
AC, 35
almost development closed, 52
almost parallel closed, 45
arity, 17
ARS, 10

base type, 24
β-rule, 25, 98
β-step, 25, 98
binary relation, 9
bound variable, 24

capture-avoiding substitution, 97
cartesian product, 9
CeTA, 5
Church-Rosser, 12

weak, 13
closed under contexts, 20
closed under substitutions, 20
commutation, 14

local, 14
semi-, 15

strong, 14
compatible, 57, 69
composition, 10
confluence, 11

local, 13
semi-, 15
strong, 14

constant, 17
context, 18, 25

multihole, 18
conversion, 11
convertible, 11
CPF, 5
CR, 12
critical overlap, 23
critical pair, 23, 108

inner, 23
joinable, 23

critical peak, 23
critical-pair-closing, 47

development closed, 52
development step, 22
diamond property, 14
duplicating, 21

η-expansion, 25
extended locally decreasing, 57, 68

fan property, 75
forward closure, 90
free variable, 24
freshness constraint, 96
full-superdevelopment function, 100
function peak, 62
function symbol positions, 18

150

Index

higher-order recursive path order,
110

higher-order rewrite system, 27
hole, 18, 25
HORPO, 110
HRS, 27

inner critical pair, 23
instance, 20
inverse, 9
IsaFoR, 5

joinable, 10, 11, 23

labeling, 67
compatible, 69

lambda term
typed, 24

left-linear, 21
xk-lifter, 108
linear, 21, 24
local commutation, 14
local confluence, 13
local peak, 13
locally decreasing, 57

match, 20
meetable, 11
most general unifier, 20
multihole context, 18
multiset extension, 10
multistep rewrite relation, 22

natural numbers, 9
normal form, 10

orthogonal, 115
overlap, 40, 108

overlay, 23

parallel closed, 36
parallel peak, 62
parallel rewrite relation, 22, 65
pattern, 28
pattern rewrite system, 28
peak, 11

critical, 23
function, 62
joinable, 11
local, 13
parallel, 62
variable, 62

position, 18
above, 18
below, 18
function symbol, 18
parallel, 18
root, 18
variable, 18

pre-term, 26
proper subterm, 19
PRS, 28

reachable, 10
redex pattern, 56

match, 56
parallel, 57

reducible, 10
reduct, 10
redundant, 85
reflexive closure, 10
reflexive transitive closure, 10
relation, 9

binary, 9
compatible, 57

151

Index

composition, 10
identity, 10
inverse, 9

relative TRS, 22
rewrite, 10
rewrite relation, 20
rewrite rule, 21, 27
rewrite sequence

finite, 10
infinite, 11

rewrite step, 10
rewrite system

abstract, 10
higher-order, 27
pattern, 28
relative, 22
term, 21

right-linear, 21
root position, 18
rule labeling, 60

semi-commutation, 15
semi-confluence, 15
signature, 17, 26
simple type, 24
size, 18
source labeling, 72
strong commutation, 14
strong confluence, 14
strongly closed, 34
substitution, 20, 25

capture-avoiding, 25, 97
subterm, 19, 27

proper, 19
symmetric closure, 10

term, 17, 26

term rewrite system, 21
termination, 11
top, 27
transitive closure, 10
triangle property, 103
TRS, 21
type, 24
typed lambda term, 24

unifiable, 20
unifier, 20

most general, 20

valley, 11
variable, 17

bound, 24
free, 24
typed, 24

variable peak, 62
variable positions, 18

weakly compatible, 72
weakly extended locally decreasing,

72
weakly orthogonal, 115

Z-property, 99

152

	Introduction
	Rewriting and Confluence
	Formalization and Certification
	Overview

	Rewriting
	Preliminary Notions
	Abstract Rewrite Systems
	Term Rewriting
	Lambda Calculus
	Higher-Order Rewriting

	Closing Critical Pairs
	Critical Pair Lemma
	Strongly Closed Critical Pairs
	Parallel Closed Critical Pairs
	Almost Parallel Closed Critical Pairs
	Critical Pair Closing Systems
	Certificates
	Summary

	Rule Labeling
	Preliminaries
	Formalized Confluence Results
	Local Peaks
	Local Decreasingness

	Checkable Confluence Proofs
	Linear Term Rewrite Systems
	Left-linear Term Rewrite Systems
	Certificates

	Assessment
	Summary

	Redundant Rules
	Theory
	Formalization and Certification
	Heuristics
	Summary

	Confluence of the Lambda Calculus
	Nominal Lambda Terms
	The Z Property
	The Triangle Property
	Assessment

	Confluence of Higher-Order Rewriting
	Higher-Order Critical Pairs
	Termination
	Orthogonality
	Modularity
	Redundant Rules
	Summary

	CSI and CSI^ho
	Usage
	Implementation Details
	Experimental Results
	Term Rewrite Systems
	Higher-Order Rewrite Systems

	Conclusion
	Related Work
	Future Work

	Bibliography
	Index

